HKUST Library Institutional Repository Banner

HKUST Institutional Repository >
Electronic and Computer Engineering  >
ECE Journal/Magazine Articles >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/2136
Title: A pre-BLAST-DFE technique for the downlink of frequency-selective fading MIMO channels
Authors: Choi, Lai-U
Murch, Ross David
Keywords: Multi-input multi-output (MIMO) channels
Multiple access interference (MAI)
Inter-symbol interference (ISI)
Error probability
Gaussian approximation
Issue Date: May-2004
Citation: IEEE transactions on communications, v. 52, iss. 5, May 2004, p. 737-743
Abstract: In this paper, we propose a pre-Bell Laboratories layered space-time (BLAST)-decision-feedback equalization technique for the downlink of frequency-selective fading multiple-input multiple-output (MIMO) channels to combat multiple-access interference (MAI) and intersymbol interference (ISI). In our technique, we perform MIMO pre-equalization and prelayered space-time processing at the transmitter or base station, with a simplified receiver at the mobile station that requires only limited signal processing. An important application is in the downlink, so that a simplified mobile station can be constructed. An expression for the signal-to-noise ratio (SNR) and error probability based on the Gaussian approximation of the output noise term is derived. Performance is investigated by analysis and simulation results. In particular, it is demonstrated that the diversity order of this technique is higher than that of the MIMO orthogonal frequency-division multiplexing (OFDM) with vertical (V)-BLAST and MIMO OFDM with linear transmit preprocessing. It is also noticed that this technique performs better at high SNR values.
Rights: © 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
URI: http://hdl.handle.net/1783.1/2136
Appears in Collections:ECE Journal/Magazine Articles

Files in This Item:

File Description SizeFormat
Paper1020592Revised.pdfpre-published version104KbAdobe PDFView/Open

Find published version via OpenURL Link Resolver

All items in this Repository are protected by copyright, with all rights reserved.