HKUST Library Institutional Repository Banner

HKUST Institutional Repository >
Electronic and Computer Engineering  >
ECE Journal/Magazine Articles >

Please use this identifier to cite or link to this item:
Title: Layered space-time equalization for wireless MIMO systems
Authors: Zhu, Xu
Murch, Ross David
Keywords: Layered space-time equalization (LSTE)
Channel estimation
Issue Date: 5-Jun-2002
Citation: IEEE transactions on wireless communications, v. 2, iss. 6, Nov. 2003, p. 1189-1203
Abstract: We investigate layered space-time equalization (LSTE) architectures for multiple-input multiple-output (MIMO) frequency-selective channels. At each stage or layer of detection, a MIMO delayed decision feedback sequence estimator (MIMO-DDFSE) is used to tentatively detect a group of selected data streams, among which a subgroup of data streams are output and are canceled from the received signals. With the proposed architectures, the numbers of the tentatively detected data streams and output data streams can be different at different LSTE stages, while the MIMO-DDFSE can also reduce to the special cases of multiple-input single-output decision feedback equalizer (MISO-DFE), MISO-DDFSE, and MIMO-DFE, allowing tradeoffs between performance and complexity. We also derive the equalizer coefficients, discuss timing recovery, and consider channel estimation. Simulation results demonstrate the performance of the proposed LSTE structures and the tradeoffs between performance and complexity of the multistage structure and the single-stage version. We also demonstrate the impact of imperfect channel estimation, imperfect interference cancellation, the number of receive antennas, filter length, and oversampling on performance.
Rights: © 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Appears in Collections:CenWIT Journal/Magazine Articles
ECE Journal/Magazine Articles

Files in This Item:

File Description SizeFormat
TW01286final.pdfpre-published version290KbAdobe PDFView/Open

Find published version via OpenURL Link Resolver

All items in this Repository are protected by copyright, with all rights reserved.