HKUST Library Institutional Repository Banner

HKUST Institutional Repository >
Computer Science and Engineering >
CSE Conference Papers >

Please use this identifier to cite or link to this item:
Title: Human action recognition using local spatio-temporal discriminant embedding
Authors: Yeung, Dit-Yan
Jia, Kui
Keywords: Human action recognition
Manifold embedding method
Local Spatio-Temporal Discriminant Embedding (LSTDE)
Issue Date: 2008
Citation: To appear in Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Alaska, U.S.A., 24-26 June 2008
Abstract: Human action video sequences can be considered as nonlinear dynamic shape manifolds in the space of image frames. In this paper, we address learning and classifying human actions on embedded low-dimensional manifolds. We propose a novel manifold embedding method, called Local Spatio-Temporal Discriminant Embedding (LSTDE). The discriminating capabilities of the proposed method are two-fold: (1) for local spatial discrimination, LSTDE projects data points (silhouette-based image frames of human action sequences) in a local neighborhood into the embedding space where data points of the same action class are close while those of different classes are far apart; (2) in such a local neighborhood, each data point has an associated short video segment, which forms a local temporal subspace on the embedded manifold. LSTDE finds an optimal embedding which maximizes the principal angles between those temporal subspaces associated with data points of different classes. Benefiting from the joint spatio-temporal discriminant embedding, our method is potentially more powerful for classifying human actions with similar space-time shapes, and is able to perform recognition on a frame-byframe or short video segment basis. Experimental results demonstrate that our method can accurately recognize human actions, and can improve the recognition performance over some representative manifold embedding methods, especially on highly confusing human action types.
Rights: © 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Appears in Collections:CSE Conference Papers

Files in This Item:

File Description SizeFormat
yeung.cvpr2008b2.pdf823KbAdobe PDFView/Open

All items in this Repository are protected by copyright, with all rights reserved.