HKUST Library Institutional Repository Banner

HKUST Institutional Repository >
Computer Science and Engineering >
CSE Master Theses  >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/4255
Title: A learning approach to spam detection based on social networks
Authors: Lam, Ho-Yu
Issue Date: 2007
Abstract: The massive increase of spam is posing a very serious threat to email which has become an important means of communication. Not only does it annoy users, but it also consumes a lot of the Internet’s bandwidth. This thesis studies the problem of spam and provides a survey to the existing and proposed preventive and technological anti-spam measures. Most spam filters in existence are based on content analysis. While these anti-spam tools have proven useful, they do not protect bandwidths from being wasted and spammers are learning to bypass them via clever manipulation of the spam content. A very different approach to spam detection is based on the behavior of email senders. In this thesis, we propose a learning approach to spam sender detection based on features extracted from social networks constructed from email exchange logs. Legitimacy scores are assigned to senders based on their likelihood of being a legitimate sender. Three potential spam mitigation schemes are also explored.
Description: Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2007
x, 93 leaves : ill. ; 30 cm
HKUST Call Number: Thesis CSED 2007 Lam
URI: http://hdl.handle.net/1783.1/4255
Appears in Collections:CSE Master Theses

Files in This Item:

File Description SizeFormat
th_redirect.html0KbHTMLView/Open

All items in this Repository are protected by copyright, with all rights reserved.