HKUST Library Institutional Repository Banner

HKUST Institutional Repository >
Mathematics >
MATH Master Theses  >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/5104
Title: The Rayleigh BeĢnard problem and oscillation theory of complex differential equations
Authors: Kwan, Yuen Yick
Issue Date: 2000
Abstract: Part I The Benard problem is concerned with a fluid heated from below between two infinite parallel planes. The analytical results of the critical Rayliegh number and cell patterns have been known for a long time. However, not many people have considered the effects of the side walls. In this paper, the Benard problem in a rectangular container of various ratios is considered. We study some properties of a linear operator whose eigenvalues determine the critical Rayleigh number. The case in which the container makes an angle with the horizontal is also considered. Part II Chiang and Wang showed that certain determinant condition must be satisfied in order that the solution of f'''+K1f'+(ez+K0)f = 0 has a finite exponent of convergence on its zero-sequence. In this paper, we raise a conjecture on the form of the determinant. In the case K1 = 0, our conjecture is consistent with the one raised by Chiang, Laine and Wang.
Description: Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2000
xi, 70 leaves : ill. ; 30 cm
HKUST Call Number: Thesis MATH 2000 Kwan
URI: http://hdl.handle.net/1783.1/5104
Appears in Collections:MATH Master Theses

Files in This Item:

File Description SizeFormat
th_redirect.html0KbHTMLView/Open

All items in this Repository are protected by copyright, with all rights reserved.