HKUST Library Institutional Repository Banner

HKUST Institutional Repository >
Computer Science and Engineering >
CSE Conference Papers >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/6604
Title: Double mobility : coverage of the sea surface with mobile sensor networks
Authors: Luo, Ji
Wang, Dan
Zhang, Qian
Keywords: Mobility management
Wireless sensor networks
Issue Date: Apr-2009
Citation: INFOCOM 2009, the 28th Conference on Computer Communications, IEEE Proceedings, Rio de Janeiro, Brazil, 19-25 April 2009, p. 118-126
Abstract: We are interested in the sensor networks for scientific applications to cover and measure statistics on the sea surface. Due to flows and waves, the sensor nodes may gradually lose their positions; leaving the points of interest uncovered. Manual readjustment is costly and cannot be performed in time. We argue that a network of mobile sensor nodes which can perform self-adjustment is the best candidate to maintain the coverage of the surface area.In our application, we face a unique double mobility coverage problem. That is, there is an uncontrollable mobility, U-Mobility, by the flows which breaks the coverage of the sensor network. Moreover, there is also a controllable mobility, C-Mobility, by the mobile nodes which we can utilize to reinstall the coverage. Our objective is to build an energy efficient scheme for the sensor network coverage issue with this double mobility behavior. A key observation of our scheme is that the motion of the flow is not only a curse but should also be considered as a fortune. The sensor nodes can be pushed by free to some locations that potentially help to improve the overall coverage. With that taken into consideration, more efficient movement decision can be made. To this end, we present a dominating set maintenance scheme to maximally exploit the U-Mobility and balance the energy consumption among all the sensor nodes. We prove that the coverage is guaranteed in our scheme. We further propose a fully distributed protocol that addresses a set of practical issues. Through extensive simulation, we demonstrate that the network lifetime can be significantly extended, compared to a straight forward back-to-original reposition scheme.
Rights: © 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
URI: http://hdl.handle.net/1783.1/6604
Appears in Collections:CSE Conference Papers

Files in This Item:

File Description SizeFormat
double.pdf741KbAdobe PDFView/Open

All items in this Repository are protected by copyright, with all rights reserved.