HKUST Library Institutional Repository Banner

HKUST Institutional Repository >
Computer Science and Engineering >
CSE Conference Papers >

Please use this identifier to cite or link to this item:
Title: Measurement study of mobility-induced losses in IEEE 802.15.4
Authors: Wu, Kaishun
Tan, Haoyu
Ngan, Hoi Lun
Liu, Yunhuai
Ni, Lionel M.
Keywords: Mobility
IEEE 802.15.4
Pseudo-noise code (PNCode)
Chip error characteristics
Measurement study
Issue Date: May-2010
Citation: Proceedings 2010 IEEE International Conference on Communications, ICC 2010, 23-27 May 2010, Cape Town, South Africa, p. 1-5
Abstract: Recent years have seen an increasing need of wireless networks in a mobile environment serving for more complex tasks and applications. Mobility becomes an indispensable factor of the system design and has been widely recognized as a general cause of packet loss. Though many works have been done on mobility study, to the best of our knowledge, they are mainly based on simulations or analytical studies that assume idealized link conditions. In this work, we experimentally investigate the nature of the error characteristics of mobility-induced packet losses at “chip-level” in IEEE 802.15.4. We believe this more understanding of mobility-induced packet losses can bring great potential benefits for further study on channel coding, routing and protocol design. Toward this end, we design and implement an efficient algorithm to distinguish mobility-induced packet losses from other packet losses of static environments such as attenuation. Our algorithm is greatly advantaged as it needs no training data even when environment changes. Collecting three corrupted packets is sufficient to obtain a satisfactory performance. This feature makes our design in particular suitable for dynamic and mobile environments, allowing real-time mobilityinduced loss detection in an online manner. Experiments based on GNU Radio testbed show that our algorithm can provide an accuracy of up to 96%.
Rights: © 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Appears in Collections:CSE Conference Papers

Files in This Item:

File Description SizeFormat
measure.pdf164KbAdobe PDFView/Open

All items in this Repository are protected by copyright, with all rights reserved.