HKUST Library Institutional Repository Banner

HKUST Institutional Repository >
Computer Science and Engineering >
CSE Journal/Magazine Articles >

Please use this identifier to cite or link to this item:
Title: Leveraging multi-AP diversity for transmission resilience in wireless networks: architecture and performance analysis
Authors: Zhu, Yanfeng
Zhang, Qian
Niu, Zhisheng
Zhu, Jing
Keywords: WLAN
Wireless multi-AP networks
Issue Date: Oct-2009
Citation: IEEE transactions on wireless communications, v. 8, no. 10, October 2009, p. 5030-5040
Abstract: With the increasing development of IEEE 802.11 based wireless local area network (WLAN) devices, large-scale multi-cell WLANs with a high density of users and access points (APs) have emerged widely in various hotspots. Providing resilient data transmission has been a primary challenge for scaling the WLANs because the high density of users and APs results in too many collisions. In this paper, we analyze and point out the defect of the single association mechanism defined in IEEE 802.11 on transmission reliability from a network perspective. Then, we propose a 'multi-AP' architecture with which a MAC layer device called an AP controller (AC) is employed to enable each user to associate and cooperate with multiple APs. In this way, the users can benefit from the diversity effect of multipaths with independent collisions and transmission errors. This paper concentrates on the theoretical analysis of performance comparison between the proposed ldquoMulti-APrdquo architecture and that in IEEE 802.11. Extensive simulation results show that the proposed ldquomulti-APrdquo architecture can obtain much better performance in terms of the throughput per user and the total throughput, and the performance gain is position dependent. Moreover, the unfairness issue in traditional WLANs due to capture effect can be alleviated properly in the ldquomulti-APrdquo framework.
Rights: © 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Appears in Collections:CSE Journal/Magazine Articles

Files in This Item:

File Description SizeFormat
leveraging.pdf556KbAdobe PDFView/Open

Find published version via OpenURL Link Resolver

All items in this Repository are protected by copyright, with all rights reserved.