HKUST Library Institutional Repository Banner

HKUST Institutional Repository >
Computer Science and Engineering >
CSE Conference Papers >

Please use this identifier to cite or link to this item:
Title: Domain adaptation via transfer component analysis
Authors: Pan, Sinno Jialin
Tsang, Ivor W.
Kwok, James Tin-Yau
Yang, Qiang
Keywords: Domain adaptation
Transfer component analysis
Reproducing Kernel Hilbert Space (RKHS)
Maximum Mean Discrepancy (MMD)
Machine learning
Issue Date: Jul-2009
Citation: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI-09), 11-17 July 2009, Pasadena, CA, USA, p. 1187-1192.
Abstract: Domain adaptation solves a learning problem in a target domain by utilizing the training data in a different but related source domain. Intuitively, discovering a good feature representation across domains is crucial. In this paper, we propose to find such a representation through a new learning method, transfer component analysis (TCA), for domain adaptation. TCA tries to learn some transfer components across domains in a Reproducing Kernel Hilbert Space (RKHS) using Maximum Mean Discrepancy (MMD). In the subspace spanned by these transfer components, data distributions in different domains are close to each other. As a result, with the new representations in this subspace, we can apply standard machine learning methods to train classifiers or regression models in the source domain for use in the target domain. The main contribution of our work is that we propose a novel feature representation in which to perform domain adaptation via a new parametric kernel using feature extraction methods, which can dramatically minimize the distance between domain distributions by projecting data onto the learned transfer components. Furthermore, our approach can handle large datsets and naturally lead to out-of-sample generalization. The effectiveness and efficiency of our approach in are verified by experiments on two real-world applications: cross-domain indoor WiFi localization and cross-domain text classification.
Rights: Copyright © 2009, Association for the Advancement of Artificial Intelligence ( Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-09).
Appears in Collections:CSE Conference Papers

Files in This Item:

File Description SizeFormat
ijcai09.pdf117KbAdobe PDFView/Open

All items in this Repository are protected by copyright, with all rights reserved.