HKUST Library Institutional Repository Banner

HKUST Institutional Repository >
Computer Science and Engineering >
CSE TCSC Research Reports >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/704
Title: The probabilistic complexity of the Voronoi diagram of points on a polyhedron
Authors: Na, Hyeon-Suk
Golin, Mordecai J.
Keywords: 2-dimensional Poisson distribution
Voronoi diagram of points
Issue Date: 8-Dec-2001
Series/Report no.: HKUST Theoretical Computer Science Center Research Report ; HKUST-TCSC-2001-11
Abstract: It is well known that the complexity, i.e., the number of vertices, edges and faces, of the 3-dimensional Voronoi diagram of n points can be as bad as Θ(n2). Interest has recently arisen as to what happens, both in deterministic and probabilistic situations, when the three dimensional points are restricted to lie on the surface of a 2-dimensional object. In this paper we consider the situation when the points are drawn from a 2-dimensional Poisson distribution with rate n over a fixed union of triangles in R3. We show that with high probability the complexity of their Voronoi diagram is Õ(n). This implies, for example, that the complexity of the Voronoi diagram of points chosen from the surface of a general fixed polyhedron in R3 will also be Õ(n) with high probability.
URI: http://hdl.handle.net/1783.1/704
Appears in Collections:CSE TCSC Research Reports

Files in This Item:

File Description SizeFormat
200111.pdf281KbAdobe PDFView/Open

All items in this Repository are protected by copyright, with all rights reserved.