Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/183

Slot index spatial join

Authors Mamoulis, Nikos
Papadias, D
Issue Date 2003
Source IEEE transactions on knowledge and data engineering , v. 15, (1), 2003, JAN-FEB, p. 211-231
Summary Efficient processing of spatial joins is very important due to their high cost and frequent application in spatial databases and other areas involving multidimensional data. This paper proposes slot index spatial join (SISJ), an algorithm that joins a nonindexed data set with one indexed by an R-tree. We explore two optimization techniques that reduce the space requirements and the computational cost of SISJ and we compare it, analytically and experimentally, with other spatial join methods for two cases: 1) when the nonindexed input is read from disk and 2) when it is an intermediate result of a preceding database operator in a complex query plan. The importance of buffer splitting between consecutive join operators is also demonstrated through a two-join case study and a method that estimates the optimal splitting is proposed. Our evaluation shows that SISJ outperforms alternative methods in most cases and is suitable for limited memory conditions.
Subjects
ISSN 1041-4347
Rights © 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Article
Access View full-text via DOI
View full-text via Web of Science
View full-text via Scopus
Find@HKUST
Files in this item:
File Description Size Format
TKDESISJ.pdf 1666323 B Adobe PDF