Please use this identifier to cite or link to this item:

On strategies of multi-user MIMO transmit signal processing

Authors Choi,Ruly HKUST affiliated (currently or previously).
Ivrlač, Michel
Murch, Ross David View this author's profile
Utschick, Wolfgang
Issue Date 2004-11
Source IEEE transactions on wireless communications , v. 3, (6), 2004, Nov., p. 1936-1941
Summary In this letter, we introduce five different strategies of linear transmit signal processing for multiuser multiple-input multiple-output (MIMO) systems and provide performance comparisons in terms of maximum throughput in both uncorrelated and correlated channels when the number of transmit antennas is much larger than the number of receive antennas. It is shown that the multiuser MIMO schemes are preferable to time-division multiple-access (TDMA)-based MIMO schemes, hence demonstrating the power of multiuser MIMO signal processing. Our work also indicates possibilities for future research in finding efficient suboptimal algorithms. As an example, we show that our multiuser MIMO decomposition scheme can improve the maximum throughput compared to TDMA-based MIMO schemes for large number of transmit antennas or high transmit power.
Rights © 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Article
Access View full-text via DOI
View full-text via Web of Science
View full-text via Scopus
Files in this item:
File Description Size Format
CapMUMIMOmanu_revise02.pdf pre-published version 332675 B Adobe PDF