Please use this identifier to cite or link to this item:

A transmit MIMO scheme with frequency domain pre-equalization for wireless frequency selective channels

Authors Choi,Ruly
Murch, Ross David
Issue Date 2004
Source IEEE transactions on wireless communications , v. 3, (3), 2004, MAY, p. 929-938
Summary In this paper, we introduce a transmit multiple-input multiple-output (MIMO) scheme with frequency domain pre-equalization for a multipath or frequency selective channel. In this scheme, MIMO processing in the frequency domain is performed at the transmitter or base station so that the receiver or mobile station only requires limited processing. This scheme provides high data rates and also inherits from the frequency domain equalization the property of relatively low complexity in severe multipath environments. The MIMO transmit processing is derived by minimizing the minimum mean square errors (MMSE), and expressions for the signal-to-interference-plus-noise ratio and error probability based on the Gaussian approximation of the interference term are provided. Some important associated issues, such as channel errors and computational complexity, are also investigated. Numerical simulations are also provided and these demonstrate the improved performance of our proposed scheme compared to other transmit MIMO schemes. In particular, they show that the proposed system can attain multipath or frequency diversity of the channel.
ISSN 1536-1276
Rights © 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Article
Access View full-text via DOI
View full-text via Web of Science
View full-text via Scopus
Files in this item:
File Description Size Format
Manuscript_TW02_202.pdf 235987 B Adobe PDF