Please use this identifier to cite or link to this item:

Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe204) nanoparticles

Authors Hu, Jing
Lo, Irene Man Chi View this author's profile
Chen, Guohua View this author's profile
Issue Date 2005
Source Langmuir , v. 21, (24), 2005, NOV 22, p. 11173-11179
Summary In this work, the effectiveness of surface-modified jacobsite (MnFe2O4) nanoparticles was investigated for the removal and recovery of Cr(VI) from synthetic wastewater. Ten nanometer modified MnFe2O4 nanoparticles were produced to be a new adsorbent using a co-precipitation method followed by a surface redox reaction. The equilibrium time for Cr(VI) adsorption onto modified MnFe2O4 nanoparticles was as short as 5 min, and the adsorption data fit the Langmuir model well. The maximum uptake of 31.5 mg of Cr(VI)/g of modified MnFe2O4 was obtained at pH 2, which was comparable with other common adsorbents such as activated carbon and sawdust. The effects of ligands (EDTA, SO42-, NH4+) and ionic strength were studied in a pH range of 2-10. EDTA and SO42- inhibited the adsorption of Cr(VI) over the entire pH range studied, whereas NH4+ enhanced the uptake of Cr(VI) at pH greater than 6.5. The mechanisms leading to Cr(VI) adsorption by modified MnFe2O4 nanoparticles were determined by X-ray diffraction and X-ray photoelectron spectroscopy to be a combination of electrostatic interaction and ion exchange. Regeneration studies indicated the potential reuse of the modified MnFe2O4 nanoparticles without sacrificing adsorption capacity and the possible recycling of Cr(VI) without changing the valence.
ISSN 0743-7463
Language English
Format Article
Access View full-text via DOI
View full-text via Web of Science
View full-text via Scopus