Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/3184

PASA: Power adaptation for starvation avoidance to deliver wireless multimedia

Authors Chen, JC
Chan, SHG
Zhang, Q
Zhu, WW
Chen, J
Issue Date 2003
Source IEEE journal on selected areas in communications, v. 21, (10), 2003, DEC, p. 1663-1673
Summary In recent years, there has been an increasing interest to deliver multimedia services over wireless ad hoe networks. Due to the existence of hidden terminal and absence of central control, the medium access control protocol as used in the ad hoc networks may lead to channel capture, where some flows monopolize the channel while others suffer from starvation. As a consequence, the system throughput and fairness are greatly degraded. After showing that static power control leads to channel capture, we propose and study a distributed dynamic power control scheme termed "power adaptation for starvation avoidance" (PASA), which dynamically adjusts the transmission power of a node so as to avoid starvation. PASA is shown to be effective in breaking channel captures, hence improving short-term fairness among contending flows. It is simple, fully autonomous and requires no communication overhead. Via extensive simulations, we show that our power control algorithm achieves much better fairness without compromising system throughput through better spatial reuse. Our experiments with video sequences transmitting over different network topologies show that PASA achieves much better video quality with lower start-up delay and buffer requirement.
Subjects
ISSN 0733-8716
Rights © 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Article
Access View full-text via DOI
View full-text via Web of Science
View full-text via Scopus
Find@HKUST
Files in this item:
File Description Size Format
01254582.pdf 638251 B Adobe PDF