Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/3190

A new method to predict delamination in electronic packages

Authors Fan, H.B.
Wong, C.K.Y.
Yuen, M.M.F.
Issue Date 2005
Source Proceedings - Electronic Components and Technology Conference , v. 1, 2005, p. 145-150
Summary Interfacial delamination, due to the presence of dissimilar material systems, is one of the primary concerns in electronic package design. The mismatch in coefficient of thermal expansion between the different layers in the packages can generate high interfacial stresses due to thermal loading during fabrication and assembly. The present study is focused on the delamination at the Epoxy Molding Compound (EMC)/copper interface. Different EMC materials molded on copper leadframe were tested with different shear height. The stresses at the interface were evaluated using data from the button shear test (BST). Conventional failure criteria are not able to explain the stress results observed from the button shear test data. In this study, a multi-scale model was built to determine the interfacial energy between EMC and copper substrate. The interfacial material properties were evaluated from the interaction energy between EMC and Cu substrate. The interaction of EMC and Cu can be measured using the atomic force microscope (AFM). The force-distance curve obtained directly from AFM measurement is used to determine the interfacial material properties. The properties were input to the multi-scale model. Experimental force from the BST was applied to the model. The interfacial tensile stress and shear stress were evaluated and were used to calculate the interfacial energy. An energy-based failure criterion for delamination was set up. In order to benchmark the delamination failure criterion, two electronic packages, SOT #1 and SOT #2 were studied to investigate delamination in the soldering reflow process. Based on the proposed method, the predicted results were found to be consistent with those from C-SAM measurement. © 2005 IEEE.
Subjects
ISSN 0569-5503
ISBN 0-7803-8906-9
Rights © 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Conference paper
Access View full-text via Scopus
View full-text via Web of Science
Find@HKUST
Files in this item:
File Description Size Format
014412591.pdf 493543 B Adobe PDF