Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/3292

On reducing mesh delay for peer-to-peer live streaming

Authors Ren, D.
Li, Y.-T.H.
Chan, S.-H.G.
Issue Date 2008
Source Proceedings - IEEE INFOCOM , 2008, p. 1732-1740
Summary Peer-to-peer (P2P) technology has emerged as a promising scalable solution for live streaming to large group. In this paper, we address the design of overlay which achieves low source-to-peer delay, is robust to user churn, accommodates of asymmetric and diverse uplink bandwidth, and continuously improves based on existing user pool. A natural choice is the use of mesh, where each peer is served by multiple parents. Since the peer delay in a mesh depends on its longest path through its parents, we study how to optimize such delay while meeting a certain streaming rate requirement. We first formulate the minimum delay mesh problem and show that it is NP-hard. Then we propose a centralized heuristic based on complete knowledge which serves as our benchmark and optimal solution for all the other schemes under comparison. Our heuristic makes use of the concept of power in network given by the ratio of throughput and delay. By maximizing the network power, our heuristic achieves very low delay. We then propose a simple distributed algorithm where peers select their parents based on the power concept. The algorithm makes continuous improvement on delay until some minimum delay is reached. Simulation results show that our distributed protocol performs close to the centralized one, and substantially outperforms traditional and state-of-the-art approaches. © 2008 IEEE.
Subjects
ISSN 0743-166X
ISBN 978-1-4244-2025-4
Rights © 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Conference paper
Access View full-text via DOI
View full-text via Scopus
View full-text via Web of Science
Find@HKUST
Files in this item:
File Description Size Format
045097551.pdf 246987 B Adobe PDF