Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/3294

Scalable and efficient end-to-end network topology inference

Authors Jin, Xing
Tu, Wanqing
Chan, S. -H. Gary
Issue Date 2008
Source IEEE transactions on parallel and distributed systems, v. 19, (6), 2008, JUN, p. 837-850
Summary To construct an efficient overlay network, the information of underlay is important. We consider using end-to-end measurement tools such as traceroute to infer the underlay topology among a group of hosts. Previously, Max-Delta has been proposed to infer a highly accurate topology with a low number of traceroutes. However, Max- Delta relies on a central server to collect traceroute results and to select paths for hosts to traceroute. It is not scalable to large groups. In this paper, we investigate a distributed inference scheme to support scalable inference. In our scheme, each host joins an overlay tree before conducting traceroute. A host then independently selects paths for tracerouting and exchanges traceroute results with others through the overlay tree. As a result, each host can maintain a partially discovered topology. We have studied the key issue in the scheme, that is, how a low-diameter overlay tree can be constructed. Furthermore, we propose several techniques to reduce the measurement cost for topology inference. They include 1) integrating the Doubletree algorithm into our scheme to reduce measurement redundancy, 2) setting up a lookup table for routers to reduce traceroute size, and 3) conducting topology abstraction and reducing the computational frequency to reduce the computational overhead. As compared to the naive Max- Delta, our scheme is fully distributed and scalable. The computational loads for target selection are distributed to all the hosts instead of a single server. In addition, each host only communicates with a few other hosts. The consumption of edge bandwidth at a host is hence limited. We have done simulations on Internet-like topologies and conducted measurements on PlanetLab. The results show that the constructed tree has a low diameter and can support quick data exchange between hosts. Furthermore, the proposed improvements can efficiently reduce measurement redundancy, bandwidth consumption, and computational overhead.
Subjects
ISSN 1045-9219
Rights © 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Article
Access View full-text via DOI
View full-text via Web of Science
View full-text via Scopus
Find@HKUST
Files in this item:
File Description Size Format
043594511.pdf 2.33 MB Adobe PDF