Please use this identifier to cite or link to this item:

Non-cooperative power control for wireless ad hoc networks with repeated games

Authors Long, Chengnian
Zhang, Qian View this author's profile
Li, Bo View this author's profile
Yang, Huilong
Guan, Xinping
Issue Date 2007
Source IEEE journal on selected areas in communications , v. 25, (6), 2007, AUG, p. 1101-1112
Summary One of the distinctive features in a wireless ad hoc network is lack of any central controller or single point of authority, in which each node/link then makes its own decisions independently. Therefore, fully cooperative behaviors, such as cooperation for increasing system capacity, mitigating interference for each other, or honestly revealing private information, might not be directly applied. It has been shown that power control is an efficient approach to achieve quality of service (QoS) requirement in ad hoc networks. However, the existing work has largely relied on cooperation among different nodes/links or a pricing mechanism that often needs a third-party involvement. In this paper, we aim to design a non-cooperative power control algorithm without pricing mechanism for ad hoc networks. We view the interaction among the users' decision for power level as a repeated game. With the theory of stochastic fictitious play (SFP), we propose a reinforcement learning algorithm to schedule each user's power level. There are three distinctive features in our proposed scheme. First, the user's decision at each stage is self-incentive with myopic best response correspondence. Second, the dynamics arising from our proposed algorithm eventually converges to pure Nash Equilibrium (NE). Third, our scheme does not need any information exchange or to observe the opponents' private information. Therefore, this proposed algorithm can safely run in a fully selfish environment without any additional pricing and secure mechanism. Simulation study demonstrates the effectiveness of our proposed scheme.
ISSN 0733-8716
Rights © 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All ersons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Article
Access View full-text via DOI
View full-text via Web of Science
View full-text via Scopus
Files in this item:
File Description Size Format
042784111.pdf 492334 B Adobe PDF