Please use this identifier to cite or link to this item:

HC-MAC: A hardware-constrained cognitive MAC for efficient spectrum management

Authors Jia, Juncheng
Zhang, Qian
Shen, Xuemin
Issue Date 2008
Source IEEE journal on selected areas in communications, v. 26, (1), 2008, JAN, p. 106-117
Summary Radio spectrum resource is of fundamental importance for wireless communication. Recent reports show that most available spectrum has been allocated. While some of the spectrum bands (e.g., unlicensed band, GSM band) have seen increasingly crowded usage, most of the other spectrum resources are underutilized. This drives the emergence of open spectrum and dynamic spectrum access concepts, which allow unlicensed users equipped with cognitive radios to opportunistically access the spectrum not used by primary users. Cognitive radio has many advanced features, such as agilely sensing the existence of primary users and utilizing multiple spectrum bands simultaneously. However, in practice such capabilities are constrained by hardware cost. In this paper, we discuss how to conduct efficient spectrum management in ad hoc cognitive radio networks while taking the hardware constraints (e.g., single radio, partial spectrum sensing and spectrum aggregation limit) into consideration. A hardware-constrained cognitive MAC, HC-MAC, is proposed to conduct efficient spectrum sensing and spectrum access decision. We identify the issue of optimal spectrum sensing decision for a single secondary transmission pair, and formulate it as an optimal stopping problem. A decentralized MAC protocol is then proposed for the ad hoc cognitive radio networks. Simulation results are presented to demonstrate the effectiveness of our proposed protocol.
ISSN 0733-8716
Rights © 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Article
Access View full-text via DOI
View full-text via Web of Science
View full-text via Scopus
Files in this item:
File Description Size Format
044131441.pdf 2911536 B Adobe PDF