Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/39917

A Comparative Study of Thermotropic LCP and Organoclay as Fillers in High Molecular Mass Polyethylene with Different Blending Sequences

Authors Tang, Youhong
Gao, Ping View this author's profile
Ye, Lin
Zhao, Chengbi
Issue Date 2010
Source Polymer engineering and science , v. 50, (8), 2010, AUG, p. 1679-1688
Summary The influences of thermotropic liquid crystalline copolyester (TLCP) on viscosity reduction in high molecular mass polyethylene (HMMPE) filled with organoclay were investigated by controlling the blending sequence. The interactions between organoclay and TLCP in HMMPE create different morphologies and influence rheological properties of the clay/TLCP/HMMPE blends. When the organoclay was blended with TLCP first, large amounts of organoclay formed partially intercalated structures in TLCP, with phase separation occurring at the temperature when TLCP was in the nematic phase, corresponding an antagonistic effect which weakens viscosity reduction ability of TLCP for HMMPE. However, with first blending of TLCP with HMMPE and then adding organoclay into the blend, most of the organoclay enriched on TLCP surfaces in the blend. Such interaction prevents TLCP droplets from coalescing at high shear stresses, enlarging the processing window. A phenomenological model, originally for HMMPE/TLCP systems, was successfully adopted to predict the flow behaviors of clay/HMMPE/TLCP blends. POLYM. ENG. SCI., 50:1679-1688, 2010. (C) 2010 Society of Plastics Engineers
ISSN 0032-3888
Language English
Format Article
Access View full-text via DOI
View full-text via Web of Science
View full-text via Scopus
Find@HKUST