Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/56

Fundamentals of restricted-orientation convexity

Authors Fink, Eugene
Wood, Derick
Issue Date 1995-09
Summary A restricted-orientation convex set, also called an O-convex set, is a set of points whose intersection with lines from some fixed set is empty or connected. The notion of O-convexity generalizes standard convexity and orthogonal convexity. We explore some of the basic properties of O-convex sets in two and higher dimensions. We also study O-connected sets, which are restricted O-convex sets with several special properties. We introduce and investigate restricted-orientation analogs of lines, flats, and hyperplanes, and characterize O-convex and O-connected sets in terms of their intersections with hyperplanes. We then explore properties of O-connected curves; in particular, we show when replacing a segment of an O-connected curve with a new curvilinear segment yields an O-connected curve and when the catenation of several curvilinear segments forms an O-connected segment. We use these results to characterize an O-connected set in terms of O-connected segments that join pairs of its points, which are wholly contained in the set. We also identify some of the major properties of standard convex sets that hold for O-convexity.
Language English
Format Technical report
Access
Files in this item:
File Description Size Format
tr9546.pdf 291379 B Adobe PDF