Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/57608

Reverse wire bonding and phosphor printing for LED wafer level packaging

Authors Lo, Chi Chuen HKUST affiliated (currently or previously)
Lee, Shi-Wei Ricky View this author's profile
Zhang, Rong
Li, Mei
Issue Date 2012
Source Proceedings - Electronic Components Conference , 2012, p. 1814-1818
Summary Solid state lighting is a good alternative light source with reduced energy consumption. Light-emitting diode (LED) is very efficient in turning electrical energy into light. LED has a number of advantages over the traditional light sources. The optical performance of the LED component is very critical. In general, white light can be obtained by applying phosphor on a blue LED chip. The blue light from the LED excites the phosphor to emit yellow light. The blue and yellow light mixes together to give white light. In order to obtain a good optical performance, it is necessary to apply phosphor properly. It is challenging to distribute a right amount of phosphor on the LED die. Besides, phosphor dispensing is usually the slowest process when compared with die bonding and wire bonding. This controls the overall throughput of the LED packaging process. There are different methods to apply the phosphor. The phosphor is mixed with epoxy or silicone to form slurry and is then dispensed onto the chip. However, the spatial color distribution is poor if phosphor slurry is used. Conformal phosphor coating can be used to improve the spatial color distribution. In this paper, an innovative phosphor stencil printing method is proposed. This paper demonstrates the feasibility of the phosphor stencil printing process for wafer-level LED packaging. LEDs are first mounted on a wafer submount. Wire bonds are used as interconnect. The phosphor is stencil printed on the chip surface after wire bond. The minimum phosphor layer thickness is controlled by the wire bond loop height. In order to achieve a low loop height, reverse wire bonding is used. The first bond is on the wafer submount and the second bond is on the LED chip. The reverse wire bond has a very low profile which allows a thin layer of phosphor to be printed on the chip surface. Prototypes are successfully fabricated. A uniform layer of phosphor is stencil printed on the LED chip on the wafer submount. Experimental result shows that the proposed phosphor printing method is very effective in distributing the right amount of phosphor on the chip surface. © 2012 IEEE.
ISSN 0569-5503
ISBN 9781467319669
Language English
Format Conference paper
Access View full-text via DOI
View full-text via Scopus
View full-text via Web of Science
Find@HKUST