Please use this identifier to cite or link to this item:

Narrowband Biphoton Generation Near Atomic Resonance

Authors Du, Shengwang View this author's profile
Wen, Jianming
Rubin, Morton H.
Issue Date 2008
Source Journal of the Optical Society of America B: Optical Physics , v. 25, (12), 2008, DEC, p. C98-C108
Summary Generating nonclassical light offers a benchmark tool for fundamental research and potential applications in quantum optics. Conventionally, it has become a standard technique to produce nonclassical light through the nonlinear optical processes occurring in nonlinear crystals. We describe this process using cold atomic-gas media to generate such nonclassical light, especially focusing on narrowband biphoton generation. Compared with the standard procedure the new biphoton source has such properties as long coherence time, long coherence length, high spectral brightness, and high conversion efficiency. Although there exist two methodologies describing the physical process, we concentrate on the theoretical aspect of the entangled two-photon state produced from the four-wave mixing in a multilevel atomic ensemble using perturbation theory. We show that both linear and nonlinear optical responses to the generated fields play an important role in determining the biphoton waveform and, consequently, on the two-photon temporal correlation. There are two characteristic regimes determined by whether the linear or nonlinear coherence time is dominant. In addition, our model provides a clear physical picture that brings insight into understanding biphoton optics with this new source. We apply our model to recent work on generating narrowband (and even subnatural linewidth) paired photons using the technique of electromagnetically induced transparency and slow-light effect in cold atoms and find good agreement with experimental results. (C) 2008 Optical Society of America
ISSN 0740-3224
Language English
Format Article
Access View full-text via DOI
View full-text via Web of Science
View full-text via Scopus
Files in this item:
File Description Size Format
NarrowBandSPDCfinal_080802.pdf 288046 B Adobe PDF