Please use this identifier to cite or link to this item:

Many-body effect on circulating spin current in trapped Bose-Einstein condensates

Authors Ho, Cheuk Ting
Issue Date 2010
Summary Using laser beams to generate gauge potentials in cold atoms provides an opportunity to study interesting quantum phenomena in condensed matter physics. In this thesis, a scheme to manipulate atomic wave functions and generate spin current in a trapped BEC—whose ground state can be freely controlled to be a vortex or non-vortex state—has been studied and discussed. Laguerre-Gaussian beams, which carry non-zero orbital angular momentum, can be used to create coupling between the 23S1 and 23P1 states in 4He atoms. Wavefunctions in atoms interacting with these beams have been expressed in new dressed states. For atoms moving adiabatically, the coupling among the dressed states can be neglected through adiabatic approximation and centre of mass of atoms would experience both effective vector potential and effective scalar potential. The eigenenergies and wavefunctions of a single atom have been calculated by computational methods. In addition, the ground-state energies, wavefunctions and spin current of many-body systems, in which the non-linear Gross-Pitaevskii particle-particle interaction is included, have been found. Comparing the result of a many-body system and those in the single particle system, the wavefunctions of the many-body system spread over a larger region than that in the single particle system, causing a significant difference in their spin current density. Also, the ground-state energy per particle in the many-body system is higher than that in the single particle system.
Note Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2010
Language English
Format Thesis
Access View full-text via DOI
Files in this item:
File Description Size Format
th_redirect.html 337 B HTML
Copyrighted to the author. Reproduction is prohibited without the author’s prior written consent.