Please use this identifier to cite or link to this item:

Asymptotic analysis of first passage time in complex networks

Authors Lau, H.W.
Szeto, K.Y. View this author's profile
Issue Date 2010
Source EPL , v. 90, (4), 2010, May, article number 40005
Summary The first passage time (FPT) distribution for random walks in complex networks is calculated through an asymptotic analysis. For a network with size N and short relaxation time tau << N, the computed mean first passage time (MFPT), which is the inverse of the decay rate of FPT distribution, is inversely proportional to the degree of the destination. These results are verified numerically for the paradigmatic networks with excellent agreement. We show that the range of validity of the analytical results covers networks that have short relaxation time and high mean degree, which turn out to be valid to many real networks.Copyright (C) EPLA, 2010
ISSN 0295-5075
Rights Europhysics letters © 2010 IOP publishing Ltd. The journal's web site is located at
Language English
Format Article
Access View full-text via DOI
View full-text via Web of Science
Files in this item:
File Description Size Format
mfpt-revised.pdf 564742 B Adobe PDF