Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/6544

Energy-Efficient Wake-Up Scheduling for Data Collection and Aggregation

Authors Wu, Yanwei
Li, Xiang-Yang
Liu, YunHao
Lou, Wei
Issue Date 2010
Source IEEE transactions on parallel and distributed systems , v. 21, (2), 2010, FEB, p. 275-287
Summary A sensor in wireless sensor networks (WSNs) periodically produces data as it monitors its vicinity. The basic operation in such a network is the systematic gathering (with or without in-network aggregation) and transmitting of sensed data to a base station for further processing. A key challenging question in WSNs is to schedule nodes' activities to reduce energy consumption. In this paper, we focus on designing energy-efficient protocols for low-data-rate WSNs, where sensors consume different energy in different radio states (transmitting, receiving, listening, sleeping, and being idle) and also consume energy for state transition. We use TDMA as the MAC layer protocol and schedule the sensor nodes with consecutive time slots at different radio states while reducing the number of state transitions. We prove that the energy consumption by our scheduling for homogeneous network is at most twice of the optimum and the timespan of our scheduling is at most a constant times of the optimum. The energy consumption by our scheduling for heterogeneous network is at most Theta(log R-max/R-min) times of the optimum. We also propose effective algorithms to construct data gathering tree such that the energy consumption and the network throughput is within a constant factor of the optimum. Extensive simulation studies show that our algorithms do considerably reduce energy consumption.
Subjects
MAC
WSN
ISSN 1045-9219
Rights © 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Article
Access View full-text via DOI
View full-text via Web of Science
View full-text via Scopus
Find@HKUST
Files in this item:
File Description Size Format
Energyefficient.pdf 1726094 B Adobe PDF