Please use this identifier to cite or link to this item:

A Distributed Protocol to Serve Dynamic Groups for Peer-to-Peer Streaming

Authors Jin, Xing
Chan, Gary Shueng Han
Wong, Wan-Ching
Begen, Ali C.
Issue Date 2010
Source IEEE transactions on parallel and distributed systems , v. 21, (2), 2010, Fenruary, p. 216-228
Summary Peer-to-peer (P2P) streaming has been widely deployed over the Internet. A streaming system usually has multiple channels, and peers may form multiple groups for content distribution. In this paper, we propose a distributed overlay framework (called SMesh) for dynamic groups where users may frequently hop from one group to another while the total pool of users remain stable. SMesh first builds a relatively stable mesh consisting of all hosts for control messaging. The mesh supports dynamic host joining and leaving, and will guide the construction of delivery trees. Using the Delaunay Triangulation (DT) protocol as an example, we show how to construct an efficient mesh with low maintenance cost. We further study various tree construction mechanisms based on the mesh, including embedded, bypass, and intermediate trees. Through simulations on Internet-like topologies, we show that SMesh achieves low delay and low link stress.
ISSN 1045-9219
Rights © 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Article
Access View full-text via DOI
View full-text via Web of Science
View full-text via Scopus
Files in this item:
File Description Size Format
distrib_pro.pdf 2747320 B Adobe PDF