Please use this identifier to cite or link to this item:

Read-out circuit analysis for high-speed low-noise VCO based APS CMOS image sensor

Authors Tang, Fang HKUST affiliated (currently or previously)
Bermak, Amine View this author's profile
Issue Date 2010
Source Proceedings - 5th IEEE International Symposium on Electronic Design, Test and Applications, DELTA 2010 , 2010, p. 330-335
Summary A detailed read-out circuit analysis of the VCO based APS CMOS image sensor is presented in this paper. According to the mathematic analysis and simulation results, the read-out speed should be decreased when reducing the bias current. Moreover, the feature of the device gain factor and the source follower's threshold voltage are investigated, showing important effects with respect to not only the read-out time but also the energy consumption. The proposed VCO based read-out circuit and frequency counter consist an equivalent bandpass filter. According to the transfer function analysis of this equivalent filter, the noise cancellation efficiency is jointly determined by the bias current, device gain factor and source follower's threshold voltage, which constitute the basic principles for high-speed low-noise CMOS APS image sensor design. © 2010 IEEE.
ISBN 978-0-7695-3978-2
Rights © 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Conference paper
Access View full-text via DOI
View full-text via Scopus
Files in this item:
File Description Size Format
ReadoutCircuit.pdf 276926 B Adobe PDF