Please use this identifier to cite or link to this item:

ASAP: Scalable Identification and Counting for Contactless RFID Systems

Authors Qian, Chen
Liu, Yunhuai HKUST affiliated (currently or previously)
Ngan, Hoilun HKUST affiliated (currently or previously)
Ni, Lionel M. View this author's profile
Issue Date 2010
Source International Conference on Distributed Computing Systems (ICDCS) , 2010
Summary The growing importance of operations such as identification, location sensing and object tracking has led to increasing interests in contactless Radio Frequency Identification (RFID) systems. Enjoying the low cost of RFID tags, modern RFID systems tend to be deployed for large-scale mobile objects. Both the theoretical and experimental results suggest that when tags are mobile and with large numbers, two classical MAC layer collision-arbitration protocols, slotted ALOHA and Tree-traversal, do not satisfy the scalability and time-efficiency requirements of many applications. To address this problem, we propose Adaptively Splitting-based Arbitration Protocol (ASAP), a scheme that provides low-latency RFID identification and has stable performance for massive RFID networks. Theoretical analysis and experimental evaluation show that ASAP outperforms most existing collision-arbitration solutions. ASAP is efficient for both small and large deployment of RFID tags, in terms of time and energy cost. Hence it can benefit dynamic and large-scale RFID systems.
ISSN 1063-6927
ISBN 978-0-7695-4059-7
Rights © 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Conference paper
Access View full-text via DOI
View full-text via Web of Science
View full-text via Scopus
Files in this item:
File Description Size Format
ASAP.pdf 404272 B Adobe PDF