Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/6704

Opportunity-Based Topology Control in Wireless Sensor Networks

Authors Liu, Yunhuai
Zhang, Qian
Ni, Lionel M.
Issue Date 2010
Source IEEE transactions on parallel and distributed systems, v. 21, (3), 2010, Mar, p. 405-416
Summary Topology control is an effective method to improve the energy efficiency of wireless sensor networks (WSNs). Traditional approaches are based on the assumption that a pair of nodes is either "connected" or "disconnected." These approaches are called connectivity-based topology control. In real environments, however, there are many intermittently connected wireless links called lossy links. Taking a succeeded lossy link as an advantage, we are able to construct more energy-efficient topologies. Toward this end, we propose a novel opportunity-based topology control. We show that opportunity-based topology control is a problem of NP-hard. To address this problem in a practical way, we design a fully distributed algorithm called CONREAP based on reliability theory. We prove that CONREAP has a guaranteed performance. The worst running time is O(vertical bar E vertical bar), where E is the link set of the original topology, and the space requirement for individual nodes is O(d), where d is the node degree. To evaluate the performance of CONREAP, we design and implement a prototype system consisting of 50 Berkeley Mica2 motes. We also conducted comprehensive simulations. Experimental results show that compared with the connectivity-based topology control algorithms, CONREAP can improve the energy efficiency of a network up to six times.
Subjects
ISSN 1045-9219
Rights © 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Article
Access View full-text via DOI
View full-text via Web of Science
View full-text via Scopus
Find@HKUST
Files in this item:
File Description Size Format
opport.pdf 2342164 B Adobe PDF