Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/6825

Delay Tolerant Event Collection in Sensor Networks with Mobile Sink

Authors Xu, Xing
Luo, Ji
Zhang, Qian
Issue Date 2010
Source 2010 PROCEEDINGS IEEE INFOCOM , 2010
Summary We are interested in event collection in a 2D region where sensors are deployed to detect and collect interested events. Using traditional multi-hop routing in wireless sensor networks to report events to a sink node or base station, will result in severe imbalanced energy consumption of static sensors. In addition, full connectivity among all the static sensors may not be possible in some cases since generally the sensors are randomly deployed in the target region. In this paper, we exploit a mobile sensor as the sink node to assist the event collection by controlling the movement of the mobile sink to collect static sensor readings. A key observation of our work is that an event has spatial-temporal correlation. Specifically, the same event can be detected by multiple nearby sensors within a period of time. Thus, it is more energy-efficient if the mobile sink can selectively communicate with only a portion of static sensors, while still collecting all the interested events. In this paper, we discuss the event collection problem by leveraging the mobility of the sink node and the spatial-temporal correlation of the event, in favor of maximizing the network lifetime with a guaranteed event collection rate. We first model the problem as sensor selection problem and show that it could be solved in polynomial time, if global knowledge of events is available and there is no velocity constraints on mobile sink. We also analyze the design of a feasible movement route for mobile sink to minimize the velocity requirements for a practical system. An online scheme is then proposed to relax the assumption about global knowledge of events and we prove that the expected event collection rate can be guaranteed in theory. Through comprehensive simulation on real trace data, we demonstrate that the network lifetime can be significantly extended, comparing to some other schemes.
Subjects
ISSN 0743-166X
ISBN 978-1-4244-5838-7
Rights © 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Conference paper
Access View full-text via DOI
View full-text via Web of Science
View full-text via Scopus
Files in this item:
File Description Size Format
05462075.pdf 422026 B Adobe PDF