Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/6828

Design of non-orthogonal multi-channel sensor networks

Authors Xu, X.
Luo, J.
Zhang, Q.
Issue Date 2010
Source Proceedings - International Conference on Distributed Computing Systems , 2010, p. 358-367
Summary A critical issue in wireless sensor networks (WSNs) is represented by the network throughput. To meet the throughput requirement, researchers propose multi-channel design in 802.15.4 networks to better utilize the wireless medium and avoid the co-channel interference. However, traditional orthogonal channel design restricts the number of channels and limits the throughput performance. We argue that the orthogonality is not necessary for multi-channel design in WSNs. In this paper, we investigate the feasibility of non-orthogonal channel design. In our experiment, we observe that with non-orthogonal transmission, the effect of interference comes from co-channel and inter-channel is different. More specifically, the inter-channel interference is tolerable with certain channel center frequency distance (CFD). According to that, we propose a novel scheme DCN (Dynamic CCA-threshold for Non-orthogonal transmission) which adjusts the CCA-threshold to enable the concurrent transmissions on adjacent non-orthogonal channels and thus improve the overall network throughput performance. Through comprehensive experiments on our testbed, we verify that our DCN achieves about 38.4% ∼ 55.7% throughput improvement in general network configurations comparing to the default ZigBee design. © 2010 IEEE.
Subjects
ISSN 1063-6927
ISBN 978-0-7695-4059-7
Rights © 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Language English
Format Conference paper
Access View full-text via DOI
View full-text via Scopus
View full-text via Web of Science
Find@HKUST
Files in this item:
File Description Size Format
10.1109.pdf 739254 B Adobe PDF