Please use this identifier to cite or link to this item: http://hdl.handle.net/1783.1/6830

Domain Adaptation via Transfer Component Analysis

Authors Pan, Sinno Jialin
Tsang, Ivor W.
Kwok, James T.
Yang, Qiang
Issue Date 2009
Source 21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS , 2009, p. 1187-1192
Summary Domain adaptation solves a learning problem in a target domain by utilizing the training data in a different but related source domain. Intuitively, discovering a good feature representation across domains is crucial. In this paper, we propose to find such a representation through a new learning method, transfer component analysis (TCA), for domain adaptation. TCA tries to learn some transfer components across domains in a Reproducing Kernel Hilbert Space (RKHS) using Maximum Mean Discrepancy (MMD). In the subspace spanned by these transfer components, data distributions in different domains are close to each other. As a result, with the new representations in this subspace, we can apply standard machine learning methods to train classifiers or regression models in the source domain for use in the target domain. The main contribution of our work is that we propose a novel feature representation in which to perform domain adaptation via a new parametric kernel using feature extraction methods, which can dramatically minimize the distance between domain distributions by projecting data onto the learned transfer components. Furthermore, our approach can handle large datsets and naturally lead to out-of-sample generalization. The effectiveness and efficiency of our approach in are verified by experiments on two real-world applications: cross-domain indoor WiFi localization and cross-domain text classification.
Subjects
ISBN 978-1-57735-426-0
Rights Copyright © 2009, Association for the Advancement of Artificial Intelligence (www.aaai.org). Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-09).
Language English
Format Conference paper
Access View full-text via Web of Science
Files in this item:
File Description Size Format
ijcai09.pdf 119929 B Adobe PDF