Please use this identifier to cite or link to this item:

Approximating a voronoi cell

Authors Arya, Sunil
Vigneron, Antoine
Issue Date 2003
Summary Given a set S of n points in IRd, called sites, we consider the problem of approximating the Voronoi cell of a site p by a convex polyhedron with a small number of facets or, equivalently, of finding a small set of approximate Voronoi neighbors of p. More precisely, we define an ∈-approximate Voronoi neighborhood of p, denoted AVN (p, S), to be a subset of S satisfying the following property: p is an ∈-approximate nearest neighbor for any point q inside the convex polyhedron defined by the bisectors between p and the sites in AVN (p, S). We show that there exists a set of ∈-approximate Voronoi neighbors with cardinality O(1/√∈) for d = 2 and cardinality O((1/∈)(d−1)/2log(1/∈)) for any fixed d ≥ 3. We also provide a worst-case lower bound of Ω((1/∈)(d−1)/2)) on the number of approximate Voronoi neighbors. Thus, our bound is tight in the plane and within a factor of O(log(1/∈)) from optimal in dimension d ≥ 3. Finally, based on our existence proofs, we design efficient algorithms for computing approximate Voronoi neighborhoods.
Language English
Format Technical report
Files in this item:
File Description Size Format
200310.pdf 166457 B Adobe PDF