Product Differentiation, Asymmetric Information and International Mergers

by

Larry D. Qiu and Wen Zhou∗

Department of Economics
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon
Hong Kong

November 2002

Abstract

Information asymmetry creates value and incentives for firms from different countries to merge. To demonstrate this point, we develop a model of international trade under oligopolistic competition and asymmetric information, in which domestic firms are informed of the local market demands, but foreign firms are not. By emphasizing two features of a merger between a domestic firm and a foreign firm, we show that the two firms always want to share information, but output coordination is not always profitable, depending on the extent of product differentiation. We also examine how such a merger affects the non-merging firms’ profits, consumer surplus, domestic welfare and global welfare. The results are crucially determined by the extent of product differentiation.

General Fields: Industrial Organization, International Trade
JEL Classification No.: D82, L49, F12
Key Words: International merger, Information sharing, Output coordination

* Larry D. Qiu: larryqiu@ust.hk. Wen Zhou: wenzhou@ust.hk.

Acknowledgment: We benefit from presentation and a seminar given at the Second Chinese Economics Annual Meeting (October, 2002, Xi’an, China) and HKUST. We are grateful to financial support from the Research Grant Council of Hong Kong (HKUST6214/00H).
1. Introduction

International mergers have recently become prolific.\(^1\) DaimlerChrysler is the most notable example in the auto industry.\(^2\) An important question to ask is what are the benefits of international mergers over domestic mergers. A related question is why and when firms located in different countries have incentives to merge. We will explore these and other related issues in this paper, with a focus on output coordination and information sharing between merging firms.

A firm often has better information about demand for its product in the local market than demand in the foreign market. Information asymmetry creates value and incentives for firms from different countries to merge. To demonstrate this point, we develop a model of international trade under oligopolistic competition (Cournot) and asymmetric information. There are \(n\) domestic firms and one foreign firm which produce differentiated products and compete in the domestic market.\(^3\) The domestic firms are informed of the market demand, but the foreign firm is not. We emphasize two features of a merger between a domestic firm and the foreign firm: they coordinate production and they share demand information. In the absence of asymmetric information, a merger allows the two merging firms to choose output jointly to maximize their joint profit. This creates two conflicting effects to the merging firms. On the one hand, output coordination eliminates the negative competition externality between the merging firms, which is good for them. On the other hand, the non-merging domestic firms respond to the merger by raising their outputs, which is bad for the merging firms. We show that such an output-coordination merger is profitable for the merging firms if and only if the products are sufficiently differentiated.

In the presence of asymmetric information, a merger enables the two merging firms to share the information about market demand, in addition to coordinating their outputs. We show that information sharing gives the merging firms additional incentives to merge. That is, information sharing always facilitates mergers. Specifically, although mergers under asymmetric information

\(^1\)According to UNCTAD (2000), the value of cross-border M&A (mergers and acquisitions) rose from less than \$100\ billion in 1987 to \$720\ billion in 1999.

\(^2\)Other examples include the one between Ford and Mazda, the one between Renault and Nissan, and the one between GM and Saab.

\(^3\)We focus on horizontal mergers, i.e., mergers between firms in the same industry. According to UNCTAD (2000), about 70 per cent in terms of value, or 50 per cent in terms of number, of cross-border M&As are horizontal.
may be still not profitable for the merging firms when the products are very similar, they
are profitable under a broader range of product differentiation than mergers under symmetric
information.

We also examine how mergers affect non-merging firms’ profits and consumer surplus, and
how they affect the domestic and global welfare. The results crucially depend on the extent of
product differentiation.

While there is already a large body of literature on mergers, studies concerning international
mergers and/or asymmetric information are relatively few.4 Closely related to the present paper
are Gal-Or (1988), Das and Sengupta (2001), and Banal-Estanol (2002). Our paper has many
distinguishing features, emphases and results, some of which are discussed below. Gal-Or (1988)
shows that mergers may create informational disadvantages on the merging firms under Cournot
competition, but always generate information advantages on the merging firms under Bertrand
competition.5 Our model differs from Gal-Or (1988) in two important aspects. First, while she
considers the case where every firm has a partial private information about demand, we consider
the case where all the domestic firms are fully informed and the foreign firm is not completely
informed. Her case better describes information structure among domestic firms, but our case
is closer to the information asymmetry between domestic and foreign firms. Because of this
difference, we obtain a different result: the merging firms always benefit from information sharing
even under Cournot competition. Second, although two merging firms produce differentiated
products, Gal-Or (1988) assumes that after merger, only one product is produced. In contrast,
we consider the case where after merger, the merging firms remain to produce two differentiated
products but coordinate their output levels.

Banal-Estanol (2002) investigates incentives to merge when firms have private information
about costs and engage in quantity competition. Following Perry and Porter (1985), he assumes
that in addition to sharing the cost information, a merger allows the merging firms to pool their
capital and therefore use their plants in a more efficient way to produce the product. He finds

4Church and Ware (2001, chapter 23) and Pepall et al (1998, chapter 8) are two sources of a summary
of merger literature.

5Gal-Or (1988) builds her model on the deterministic model of Salant et al. (1983) and Deneckere
and Davidson (1985). Salant et al. (1983) find that under Cournot competition, mergers are generally
not profitable. In contrast, Deneckere and Davidson (1985) demonstrate that firms competing in prices
always have incentives to merge.
that such a merger generates informational advantages only to the merging firms. We obtain the same result but for a different type of merger, in which the merging firms share demand information and there is no reduction in costs.

Das and Sengupta (2001) consider both the case of private information about demand and the case of private information about costs. They show that due to asymmetric information, demand uncertainty increases the likelihood of a merger, while cost uncertainty decreases the likelihood of a merger. Nonetheless, they argue that asymmetric information is always a barrier to mergers. In sharp contrast, we show that asymmetric information is always conducive to mergers. The reason for the different conclusions lies in the assumptions on how information is used in the two models. In their model, two firms bargain on a merger deal and each uses its private information to affect the bargaining outcome, but in our model, two firms share information when they merge. The two papers are also different in their focuses: while their paper looks at how the likelihood of a merger depends on cost asymmetries and bargaining inefficiencies, we are interested in how the merger incentives depend on product differentiation.

Unlike Das and Sengupta (2001), the present paper, along with Gal-Or (1988) and Banal-Estanol (2002), emphasize the information sharing feature of mergers, to which most previous literature has paid scant attention. Studies in the literature normally assume either that the merging firms coordinate their outputs (e.g., Salant et al., 1983), or that the merged entity has cost advantages (e.g., Perry and Porter, 1985). We believe that information sharing is an important element in many international mergers. Accordingly, we build our model on the literature on information sharing in oligopoly. Important contributions to this literature are made by Novshek and Sonnenschein (1982), Clark (1983), Vives (1984), Gal-Or (1985, 1986), Li (1985), Shapiro (1986) and Raith (1996). These papers concentrate on a firm’s incentives to share its private information with competing firms, but they do not consider mergers. In particular, they show that firms competing in quantities are not willing to reveal their private information about market demand, but are willing to reveal their private information about production costs. Hence, it is interesting to know whether and how merger affects firms’ willingness to reveal information. We show that merger makes a firm willing to share with its merging partner its private information about demand even under Cournot competition.\(^6\)

\(^6\)Clearly it is less interesting to show that mergers make a firm willing to reveal its private information about costs under Cournot competition.
There exist some studies on international mergers in models without asymmetric information. Long and Vousden (1995) examine how tariff reduction affects domestic and cross-border mergers. Head and Ries (1997) concentrate on the conflicts between domestic welfare and global welfare when international mergers are formed. Unlike these two papers and others, we study the effects of asymmetric information on incentives and welfare of international mergers.

The rest of the paper is organized as follows. In section 2, we present the basic model of international trade under oligopolistic competition and asymmetric information. In section 3, we focus on output-coordination mergers by assuming symmetric information. In section 4, we bring asymmetric information back to the model in order to examine the implications of asymmetric information on mergers. In section 5, we explore a merger’s effects on the welfare of consumers, non-merging firms, domestic country and the world. Section 6 concludes the paper.

2. The Model

We consider an industry which consists of n domestic firms and one foreign firm. The foreign firm competes against all the domestic firms in the domestic market by exporting its product to the market. The foreign firm is indexed by 0 and the domestic firms are indexed by $i \in N = \{1, 2, ..., n\}$. Hence, N is the set of all domestic firms, and $M \equiv \{0\} \cup N$ is the set of all firms. Assume that firms produce differentiated products and the market demand is given as

$$p_i = a + \theta - q_i - bQ_{-i}, \quad i \in M,$$

where p_i is the price of product i, q_i is the output of product i, a is a constant which is assumed to be sufficiently large so that all firms produce positive amounts in equilibrium, $b \in (0, 1)$ is a constant capturing the extent of product differentiation, and $Q_{-i} = \sum_{j \in M, j \neq i} q_j$ is the total output of all firms other than i. Moreover, θ is a random variable with zero mean and variance $\sigma^2 \equiv Var(\theta) = E(\theta^2)$. Hence, σ^2 captures demand fluctuation. While all the domestic firms have complete information about the market demand, the foreign firm has only incomplete information to begin with.

Implicitly we also assume that θ has finite support, say $[\theta_L, \theta_U]$, and a is large enough such that even at $\theta = \theta_L$, all firms have positive output. In this particular model, it turns out that we need to assume $\theta_L > -(2 + b - b)a/(2 + bm)$.

8A firm often faces some barriers entering another country’s market. We emphasize informational barriers in this model. The foreign firm has less information about the domestic demand than the
We consider a two-stage game as follows. In the first stage, one domestic firm, say firm 1 (without loss of generality), and the foreign firm together decide whether to merge. In the second stage, all firms compete in the market by choosing quantity, à la Cournot. During the transition from stage 1 to stage 2, all domestic firms receive the market demand information, i.e., they know the exact value of θ. We derive and analyze the subgame perfect Nash equilibrium (SPNE).

Because in this paper we focus on the implications of asymmetric demand information on international mergers, without loss of generality, we assume that all firms have zero marginal cost of production. Without cost differential, we define a merger between the foreign firm and domestic firm 1 as that they share information and coordinate their output to maximize joint profit.

3. Mergers under Symmetric Information

In this section, we assume that all firms (including the foreign firm) have complete information about the market demand so as to focus on merger for output coordination, called output-coordination merger. When the foreign firm, denoted as F0, and domestic firm 1, denoted as F1, merge in the first stage, they make output decisions to maximize their joint profit.

As a benchmark, we derive the non-cooperative Cournot Nash equilibrium in the absence of the first-stage merger. The first-order conditions of F0 and the domestic firms are, respectively,

\[a + \theta - 2q_0 - bQ_0 = 0, \]
\[a + \theta - 2q_i - bQ_{-i} = 0, \quad i \in N. \]

It turns out all firms have the same equilibrium output and profit:

\[q^* = \frac{a + \theta}{2 + bn} \quad \text{and} \quad \pi^* = \frac{(a + \theta)^2}{(2 + bn)^2}. \tag{1} \]

Suppose now that F0 and F1 merge in the first stage. Then in the second stage the merged entity maintains the two separate product lines but chooses q_0 and q_1 to maximize the joint profit, $(p_0q_0 + p_1q_1)$. They choose q_0 and q_1 taking the non-merging firms’ quantities \{q_2, ..., q_n\} domestic firms because it lacks knowledge of the domestic consumers’ tastes, culture differences and other environments that affect demand for the product.
as given. That gives two first-order conditions:

\[a + \theta - 2q_0 - 2bq_1 - b \sum_{i=2}^{n} q_i = 0, \]
\[a + \theta - 2q_1 - 2bq_0 - b \sum_{i=2}^{n} q_i = 0. \]

For non-merging firm \(i (i = 2, \cdots n) \), as in the usual Cournot game, their output follows the following first-order conditions:

\[a + \theta - 2q_i - bQ_i = 0, \quad i \in \{2, \cdots, n\}. \]

By solving all the first-order conditions, we obtain the market equilibrium (superscript \(c \) denotes “complete information”):

\[q_0^c = q_1^c = \frac{(2 - b)(a + \theta)}{2(2 + bn - b^2)}, \quad \pi_0^c = \pi_1^c = (1 + b)(q_0^c)^2, \quad \text{(2)} \]
\[q_i^c = \frac{a + \theta}{2 + bn - b^2}, \quad \pi_i^c = (q_i^c)^2, \quad i \in \{2, \cdots, n\}. \quad \text{(3)} \]

Direct comparison based on (1) and (3) yields the difference in total profits of the merged entity before and after the merger:

\[\Delta \pi^c \equiv (\pi_0^c + \pi_1^c) - (\pi^* + \pi^*) = \frac{b^2(a + \theta)^2 Y(n, b)}{2(2 + bn)^2(2 + bn - b^2)^2}, \]

where \(Y(n, b) \equiv n^2b^3 - (3n^2 - 4n + 4)b^2 - 4(n - 1)b + 4 \). This allows us to establish the following result.

Proposition 1: Suppose there is symmetric information among all firms.

(i) For any given \(n \), there exists a unique \(b_0(n) \in (0, 1) \) such that for \(b < b_0 \), the SPNE is that merger occurs in the first stage with the second-stage market outcomes \(\{q_0^c, q_1^c, \cdots, q_n^c\} \), and for \(b \geq b_0 \), the SPNE is that merger does not occur in the first stage and all firms produce \(q^* \) in the second stage. Moreover, \(db_0(n)/dn < 0 \).

(ii) In comparison, \(q_0^c = q_1^c < q^* \), \(q_i^c > q^* \), and \(\pi_i^c > \pi^* \) for \(i \in \{2, \cdots, n\} \).

Proof: See the Appendix.

The above proposition says that merger is more likely to be profitable for the two merging firms if products are more differentiated and the number of firms in the market is fewer. Moreover, after a merger, the two merging firms produce less than before, while the non-merging firms produce more and have higher profits than before.
F0 and F1 will merge if merger can increase their joint profit. Without a merger, all firms behave just like in a usual Cournot Nash game in which they compete aggressively. Intensive competition creates negative externalities among each other. When F0 and F1 engage in an output-coordination merger, they have incentives to reduce or eliminate the negative externalities between themselves by producing less (see $q^c_0 = q^c_1 < q^*$). Due to strategic substitution, other non-merging firms will raise their output (see $q^c_i > q^*$), and they benefit from the reduced competition ($\pi^c_i > \pi^*$ for $i \in \{2, \cdots, n\}$). Although F0 and F1 benefit from internalizing the negative externalities between themselves, they also suffer a loss because the non-merging firms increase their output. Hence, output-coordination mergers do not guarantee a larger profit for the merged entity. Proposition 1 shows that when the products are sufficiently different (b is sufficiently low), output-coordination mergers bring the merged entity more benefit than harm, and when the products are not sufficiently different (b is large), output-coordination mergers bring the merged entity more harm than benefit.

The traditional result that mergers are not profitable under Cournot competition (see Salant et al., 1983) is a special case of Proposition 1 above for $b = 1$. Proposition 1 shows that mergers are profitable when products are sufficiently differentiated.

4. Mergers under Asymmetric Information

We now return to the asymmetric information case. In order to better understand the role of information sharing in international mergers, we assume in subsection 4.1 that when a merger occurs in the first stage, F1 shares its information with F0 but in the second stage they compete in the market as if they are still independent firms. We call this type of merger as information-sharing merger. In subsection 4.2, we will investigate individual firm’s incentives for information revelation and acquisition without mergers. Finally (in subsection 4.3), we analyze full degree mergers in which F0 and F1 share information and coordinate output.

4.1. Merger for information sharing

As a benchmark, let us first derive the market equilibrium when $\theta = 0$ and all firms (including F0) know it. This is the usual Cournot game with complete information. By setting $\theta = 0$ in (1), we get the symmetric equilibrium output for each firm (superscript o indicates this benchmark
case):\[q^0 = \frac{a}{2 + bn}. \] (4)

Second-stage analysis. We now return to the original model with asymmetric information. Suppose there is no merger in the first stage. Then, we have the usual Cournot game with F0 having incomplete information in the second stage. Let us focus on the case in which without mergers none of the domestic firms can reveal their private information.\(^9\) We will investigate in subsection 4.2 the informed firms’ individual incentives to reveal private information and the uninformed firm’s incentives to acquire information.

Given \(q_i \) for \(i \in N \), F0 chooses \(q_0 \) to maximize its expected profit \(\pi^*_0 = (a - q_0 - bQ_{-0})q_0 \). The first-order condition is

\[
a - 2q_0 - bQ_{-0} = 0.
\]

Given \(q_j \) for \(j \in M_{-i} \), where \(M_{-i} = M \setminus \{i\} \), firm \(i \) chooses \(q_i \) to maximize its profit \(\pi_i = (a + \theta - q_i - bQ_{-i})q_i \). The first-order condition is

\[
a + \theta - 2q_i - bQ_{-i} = 0, \quad \forall \ i \in N.
\]

When solving all the first-order conditions above, F0 takes the expectation of the domestic firms’ output and the domestic firms know this. The solution is (superscript \(u \) indicates that F0 is “uninformed”):

\[
q^u_0 = q^o \quad \text{and} \quad q^u = q^o + \frac{\theta}{2 + bn - b}.
\] (5)

Without having more information about the realized demand, F0 chooses its output level as in the benchmark case. In contrast, the informed domestic firms adjust their output levels according to the realized demand. Their realized profits are, respectively,

\[
\pi^u_0 = (q^u_0)^2 + \frac{(2 - b)a\theta}{(2 + bn)(2 + bn - b)} \quad \text{and} \quad \pi^u = (q^u)^2.
\] (6)

We next suppose F0 and F1 engage in an information-sharing merger in the first stage, in which F1 reveals the information to F0. Then, the second stage game becomes the usual Cournot

\(^9\)We will show that without a merger, the informed domestic firms have no incentive to reveal their information. But even if they are willing to give out information free of charge, there are problems such as verifiability that constrains information revelation. Mergers certainly overcomes those problems.
game with complete information, i.e., all firms (including F0) know the realization θ. This has been derived in (1) and can be rewritten as (superscript s indicates “information-sharing”):

$$q_0^s = q^o + \frac{\theta}{(2 + bn)} \quad \text{and} \quad q^s = q^o + \frac{\theta}{(2 + bn)},$$

and

$$\pi_0^s = (q_0^s)^2 \quad \text{and} \quad \pi^s = (q^s)^2.$$ \(\tag{8}\)

Information sharing and the first-stage analysis. In the first stage, F0 and F1 decide whether to merge in order to share information. The necessary and sufficient condition for a merger is that the merged entity’s expected profit must be greater than the sum of these two firms’ expected profits without the merger. Using (6) and (8), the comparison is reduced to

$$(\pi_0^s + \pi^s) - (\pi_0^u + \pi^u) = \frac{\theta^2 Z(n, b)}{(2 + bn)^2(2 + bn - b)^2} + \frac{ab(nb - 2)\theta}{(2 + bn)^2(2 + bn - b)}$$

where $Z(n, b) \equiv (2 + bn - 2b)^2 - 2b^2$. Note $\partial Z(n, b)/\partial n > 0$ and $Z(2, b) = 4 - 2b^2 > 0$ except at $b = 1$. In the present model, we have $n \geq 2$ and so $Z(n, b) > 0$. As a result,

$$E[(\pi_0^s + \pi^s) - (\pi_0^u + \pi^u)] = \frac{\sigma^2 Z(n, b)}{(2 + bn)^2(2 + bn - b)^2} > 0. \quad \tag{9}$$

That is, the collective profit of the merged entity is always higher than the sum of the two firms without the information-sharing merger. Provided that there is a mechanism for appropriate interfirm profit transfer, F0 and F1 always choose to merge.

Proposition 2: Suppose that the merging firms (F0 and F1) only share information but do not coordinate output.

(i) The SPNE is characterized as below: F0 and F1 merge in the first stage, F0 produces q_0^s and every domestic firm produces q^s. The merged entity’s profit is $(\pi_0^s + \pi^s)$, and every other domestic firm’s profit is π^s.

(ii) For a larger σ^2, a smaller n (except when $n = 2$), or a smaller b, the net profit gains from the merger are larger. More precisely,

$$\frac{\partial E[(\pi_0^s + \pi^s) - (\pi_0^u + \pi^u)]}{\partial \sigma^2} > 0;$$

$$\frac{\partial E[(\pi_0^s + \pi^s) - (\pi_0^u + \pi^u)]}{\partial n} < 0 \quad (\text{for } n \geq 3);$$

$$\frac{\partial E[(\pi_0^s + \pi^s) - (\pi_0^u + \pi^u)]}{\partial b} < 0.$$
Proof: See the Appendix.

We will explain the intuition for Proposition 2 at the end of subsection 4.3.

4.2. Incentives for information revelation and acquisition

Even without a merger, will any informed domestic firm voluntarily reveal its private information to the uninformed F0? Does the uninformed F0 benefit from getting more information? We search for answers to these questions in this subsection. Let us compare (6) and (8). It can be calculated that

\[
\pi^s_0 - \pi^u_0 = \frac{\theta^2}{(2 + bn)^2} + \frac{nab^2\theta}{(2 + bn)^2(2 + bn - b)},
\]

\[
\pi^s - \pi^u = -\frac{b(4 + 2bn - b)\theta^2}{(2 + bn)^2(2 + bn - b)^2} - \frac{2ab\theta}{(2 + bn)^2(2 + bn - b)}.
\]

Recalling that \(E(\theta) = 0\) and \(E(\theta^2) = \sigma^2 > 0\), we immediately obtain

\[
E(\pi^s_0 - \pi^u_0) = \frac{\sigma^2}{(2 + bn)^2} > 0, \tag{10}
\]

\[
E(\pi^s - \pi^u) = -\frac{b(4 + 2bn - b)\sigma^2}{(2 + bn)^2(2 + bn - b)^2} < 0. \tag{11}
\]

Hence, we establish the following result.

Proposition 3: (i) In the model with one uninformed foreign firm and \(n\) informed domestic firms, the foreign firm always wants to acquire the information about demand, but in the absence of a merger none of the domestic firms is willing to reveal the information.

(ii) For a larger \(\sigma^2\) or a smaller \(n\), the uninformed foreign firm’s gain from acquiring information becomes larger and the loss to each informed domestic firm from revealing information, if it does, also becomes larger. For a smaller \(b\), the foreign firm’s gain is larger, but the domestic firms’ loss may be larger or smaller. More precisely,

\[
\frac{\partial E(\pi^s_0 - \pi^u_0)}{\partial \sigma^2} > 0, \quad \frac{\partial E(\pi^s_0 - \pi^u_0)}{\partial n} < 0, \quad \frac{\partial E(\pi^s_0 - \pi^u_0)}{\partial b} < 0;
\]

\[
\frac{\partial E(\pi^s - \pi^u)}{\partial \sigma^2} < 0, \quad \frac{\partial E(\pi^s - \pi^u)}{\partial n} > 0, \quad \frac{\partial E(\pi^s - \pi^u)}{\partial b} < 0 \text{ (for small } b), \quad > 0 \text{ (for large } b).\]
Proof: See the Appendix.

Hence, as indicated by part (i) of the proposition, information sharing benefits the uninformed firm, but hurts all informed firms. Without the information, F0 under-produces when actual demand is high, but over-produces when actual demand is low. With the information, however, it is able to produce more accurately according to demand, which creates a positive value to F0. In contrast, without revealing information, the informed domestic firms benefit from the foreign firm’s underproduction (when demand is high, i.e., \(\theta > 0 \)), but lose from its overproduction (when demand is low, i.e., \(\theta < 0 \)). The gain of not revealing information more than compensates the loss. Hence, in the absence of an information-sharing merger in the first stage, no domestic firm will reveal information to F0 and the equilibrium is given by (5) and (6).

To further understand the effect of information sharing on profit changes, note that \(\pi_0 = p_0q_0 \) for F0 and \(\pi_i = p_iq_i \) for the domestic firms, where the price functions are \(p_0 = a + \theta - q_0 - bnq \) and \(p_i = a + \theta - q_i - b(n - 1)q_j - bq_0 \), respectively. Let us examine F0’s profit change first. With demand fluctuation, F0’s price also fluctuates but its output does not in the absence of information sharing. However, when it receives the information, F0 produces output according to the realized demand and so its output and price moves accordingly. Since \(q_0^s \) and \(p_0^s \) move in the same direction, the ability to move creates a positive value for F0, i.e., increases F0’s expected profit. Its gain from information acquisition is *positively* correlated to the degree of price fluctuation under information sharing. Specifically, from F0’s price function \(p_0 \), the fluctuation is captured by \(\delta \equiv a + \theta - bnq^s = 2(a + \theta)/(2 + bn) \).

In contrast, both the output and price of a domestic firm fluctuate as demand changes, with or without information sharing. However, due to F0’s ability to adjust its output in the case of information sharing, a domestic firm’s fluctuation of output and price is smaller with information sharing than without. This reduction in fluctuation lowers a domestic firm’s expected profit. A domestic firm’s loss from information revelation is *positively* correlated to the degree of the reduction in its price fluctuation. Basically, if demand fluctuates more, the private information for the informed domestic firms also becomes more valuable and it is also more desirable for F0 to acquire it.\(^{10}\)

\(^{10}\)Specifically, note \(\Delta q_0 \equiv q_0^s - q_0^u = \theta/(2 + bn) \), which is positively correlated to demand fluctuation.
With the above understanding, we can then explain the intuition behind part (ii) of Proposition 2. First, for a larger σ^2, although both δ and total output fluctuation are larger, demand fluctuates more than in the case of a smaller σ^2. Hence both the gain by F0 and the loss to the domestic firms from information sharing are larger.

Second, for a larger n, both δ and total output fluctuation become smaller. That is, information sharing allows F0’s price to fluctuate less with a larger n than with a smaller n, and reduces the domestic firms’ price fluctuate less with a larger n than with a smaller n. Hence both the gain by F0 and the loss to the domestic firms from information sharing are smaller. It can also be understood by recognizing the fact that when n is very large, the private information to each firm becomes less valuable because many firms have the information and so the loss from revealing the information is small. Also it is less desirable to acquire the information by F0 since many firms have the information.

Lastly, for a larger b, δ becomes smaller. That is, information sharing makes F0’s price fluctuation less with a larger b than with a smaller b. Hence, F0’s gain from acquiring information also becomes smaller. In the contrary, for a larger b, total output fluctuation becomes larger (smaller) when b is small (large).\(^{11}\) That is, information sharing could reduce a domestic firm’s price fluctuation either less or more with a larger b than with a smaller b. Accordingly, the price fluctuation may become smaller or larger and the domestic firm’s loss from revealing information may also become smaller or bigger.

Well established literature on information sharing in oligopoly has shown that firms have no incentives to reveal their private information about market demand if they compete in quantities (See, for example, Gal-Or, 1985).\(^{12}\) Our Proposition 3 confirms this result and goes further to show that the uninformed firm has incentives to acquire the information. Moreover, it shows how various parameters (degree of demand fluctuation, market structure and product differentiation) affect the incentives. Our Proposition 2 adds to literature by showing that the uninformed firm’s...
gain from information sharing outweighs the loss to an informed firm, which provides incentives for them to engage in an information-sharing merger.

The intuition behind such a result in Proposition 2 is as follows. Output fluctuates because of θ, and informed firms benefit from the fluctuation. Before the merger, however, F_0 does not gain from the fluctuation. F_1’s gain is proportional to the degree of the fluctuation, by a factor of $1/(2 + b(n - 1))^2$. After the information-sharing merger, each firm including F_0 gains from the fluctuation by a factor of $1/(2 + bn)^2$. Compared to the case without the merger, F_1’s gain is smaller, but F_0’s gain is larger with the merger. The final comparison pins down to that between $2/(2 + bn)^2$ (for merger) and $1/[2 + b(n - 1)]^2$ (for no merger), which is equivalent to the sign of $Z(n, b)$. We have shown $Z(n, b) > 0$ except at $b = 1$ and $n = 2$, but $Z(2, 1) = 0$. That is, the total gain to the merging firms from output fluctuation is greater than F_1’s gain in the absence of mergers.

4.3. Merger for information sharing and output coordination

In this subsection, we examine the full-degree merger under asymmetric information, in which F_1 reveals information to F_0 and they choose their output levels to maximize the joint profit. We have already obtained the expressions of all the equilibrium quantities and profits before a merger (as in subsection 4.1),

$$q^u_0 = \frac{a}{2 + bn}, \quad \pi^u_0 = (q^u_0)^2 + \frac{(2 - b)a\theta}{(2 + bn)(2 + bn - b)},$$
$$q^u_1 = \frac{a}{2 + bn} + \frac{\theta}{2 + bn - b}, \quad \pi^u_1 = (q^u_1)^2,$$

and after a merger (as in section 3),

$$q^c_0 = q^c_1 = \frac{(2 - b)(a + \theta)}{2(2 + bn - b^2)},$$
$$\pi^c_0 = \pi^c_1 = (1 + b)(q^c_0)^2.$$

Thus, letting $\Delta \pi^a \equiv (\pi^c_0 + \pi^c_1) - (\pi^u_0 + \pi^u_1)$ denote the profit differential for the merged entity (superscript a indicating asymmetric information), we obtain

$$\Delta \pi^a = \frac{\theta^2 Z(n, b)}{(2 + bn)^2(2 + bn - b)^2} + \frac{a(nb^2 - 2b)\theta}{(2 + bn)^2(2 + bn - b)} + \frac{b^2(a + \theta)^2 Y(n, b)}{2(2 + bn)^2(2 + bn - b^2)^2}$$

where $Y(n, b)$ has been defined before in section 3 and $Z(n, b)$ in subsection 4.1. After taking
expectation, we have
\[E(\Delta \pi^a) = \frac{1}{(2 + bn)^2} \left[\frac{\sigma^2 Z(n, b)}{(2 + bn - b)^2} + \frac{b^2(a^2 + \sigma^2)Y(n, b)}{2(2 + bn - b^2)^2} \right]. \]

We can show (in the Appendix) that for any given \(n \geq 2 \) there exists a unique \(b_1(n) \in (0, 1) \) such that
\[
\begin{align*}
E(\Delta \pi^a) & > 0 \quad \text{for all } b \in [0, b_1) \\
E(\Delta \pi^a) & = 0 \quad \text{at } b = b_1 \\
E(\Delta \pi^a) & < 0 \quad \text{for all } b \in (b_1, 1].
\end{align*}
\]

Moreover, \(b_1(n) > b_0(n) \), where \(b_0(n) \) is defined in section 3. Based on this result, we establish the following proposition.

Proposition 4: The SPNE under asymmetric information is as follows. For any given \(n \), there exists a unique \(b_1(n) \in (b_0(n), 1) \). If \(b < b_1 \), then \(F_0 \) and \(F_1 \) merge in the first stage, with the second-stage market outcomes \(\{q_{c0}, q_{c1}, \ldots, q_{cn}\} \) as given in (2) and (3). If \(b \geq b_1 \), then \(F_0 \) and \(F_1 \) do not merge in the first stage, with the second-stage market outcomes \(\{q_{u0}, q_{u1}, \ldots, q_{un}\} \) as given in (5).

Proof: See the Appendix.

Proposition 4 says that merger is profitable if and only if products sufficiently differentiated. Since \(b_1 > b_0 \), merger occurs more often under asymmetric information than under symmetric information.

5. Welfare Analysis

We have so far examined firms’ incentives to merge and now we investigate the welfare implications of mergers under asymmetric information. In particular, we want to know how mergers affect the total industrial profit, consumer surplus, and social welfare. Since we deal with international merger, we must distinguish between domestic welfare and global welfare. Results are summarized in a table at the end of this section.

- **Industrial profit.** In previous sections, we have shown that under certain conditions, mergers are profitable, which means that the joint profit of the merging firms, i.e., \(F_0 \) and \(F_1 \), is increased after the merger. The non-merging firms, however, can be affected differently.

 Look at the information-sharing merger first. Eq.(11) indicates that every non-merging firm’s profit drops after \(F_1 \) reveals the information to \(F_0 \). Although \(F_0 \)’s profit gain outweighs \(F_1 \)’s
profit loss, as shown below, the gain may be smaller or larger than the total loss to all informed firms, depending on the extent of product differentiation. From (10) and (11), we obtain the difference between total industry profit under the information-sharing merger, denoted as Π_S, and total industrial profit before the merger, denoted as Π_N,

$$E(\Pi_S - \Pi_N) = \frac{[4(1-b) - (n^2 + n - 1)b^2] \sigma^2}{(2+bn)^2(2+bn-b)^2}. \quad (13)$$

Note that $E(\Pi_S - \Pi_N)$ is a continuous function of b. It decreases in b, and is positive at $b = 0$ but negative at $b = 1$. Hence, in a market with one uninformed foreign firm and n informed domestic firms, if an informed domestic firm reveals the information about demand to the foreign firm, the total industrial profit increases (decreases) if the extent of product differentiation is below (above) a certain level.

Next, we examine the effect of the output-coordination merger under symmetric information. The analysis in section 3, in particular Proposition 1, has shown that all non-merging firms benefit from the competition-reducing output-coordination merger, but the joint profit of F0 and F1 is not always increased after the merger. However, because the market competition is reduced, the total industrial profit increases, as shown by the following difference between total profit under output coordination, denoted as Π_M, and total profit under symmetric information but without output coordination, i.e., Π_S.

$$E(\Pi_M - \Pi_S) = \frac{b^2(a^2 + \sigma^2)[b(4-3b+b^2)n^2 + 2(2-b)^2n - 4 + 4b - 2b^2]}{2(2+bn)^2(2+bn-b^2)^2} \geq 0. \quad (14)$$

Strict inequality holds except at $b = 0$. The above analysis can be summarized below.

Lemma. In a market with one uninformed foreign firm and n informed domestic firms, output coordination merger between a domestic firm and the foreign firm always increases the total industrial profit, while information sharing merger increases the total industrial profit if and only if products are sufficiently differentiated.

Finally, we examine the net effect of the merger under asymmetric information. To this end, we need to compare Π_M and Π_N. We summarize the comparison in the following proposition.

Proposition 5. In a market with one uninformed foreign firm and n informed domestic firms, if a domestic firm and the foreign firm merge to share information and coordinate output, the total
industrial profit increases, under a reasonable assumption that the market is not too competitive (more precisely, \(n < 20 \)).^{13}

Proof: See the Appendix.

- **Consumer surplus.** Next, we look at the changes of consumer surplus due to a merger. In the beginning of section 2, we have specified the demand functions, which can be derived from a representative consumer’s utility function as given below:

\[
U = (a + \theta) \sum_i q_i - \frac{1}{2} \sum_i q_i^2 - \frac{b}{2} \sum_i \sum_{j \neq i} q_i q_j
\]

\[
\Rightarrow (a + \theta) \sum_i q_i - \frac{1}{2} \sum_i q_i^2 - \frac{b}{2} \left[(\sum_i q_i)^2 - \sum_i q_i^2 \right].
\]

Hence consumer surplus is defined as the net benefit from consumption: \(CS \equiv U - \sum_{i=0}^{n} p_i q_i \).

By comparing the consumer surplus without any merger \((CS_N) \) to the consumer surplus under the information-sharing merger \((CS_S) \), we obtain

\[
E(CS_S - CS_N) = \frac{b^2(3 - b)n^2 + b(8 - 5b + b^2)n + (2 - b)^2}{2(2 + bn)^2(2 + bn - b^2)} \sigma^2 > 0.
\]

Hence, information sharing between the firms unambiguously benefits consumers. By comparing the consumer surplus under the information-sharing merger \((CS_S) \) to the consumer surplus under the full-degree merger \((CS_M) \), we also have

\[
E(CS_M - CS_S) = \frac{b(a^2 + \sigma^2)F_1}{4(2 + bn)^2(2 + bn - b^2)^2} < 0,
\]

because

\[
F_1 \equiv -b^2(8 - 5b + b^2)n^2 - 2b(3 + b)(2 - b)^2n - 2(8 - 6b - 2b^2 + b^3) < 0.
\]

The reason is simple: output coordination reduces market competition, which hurts the consumers.

The combined effect of the merger under asymmetric information is the result of the two conflicting forces above. By calculation, we have

\[
E(CS_M - CS_N) = \frac{F_2 \sigma^2}{4(2 + bn - b^2)^2(2 + bn - b^2)^2} + \frac{F_1 ba^2}{4(2 + bn)^2(2 + bn - b^2)^2},
\]

where

\[
F_2 \equiv (1 - b)[b^2(b^2 - 4b + 6)n^2 + 2b(8 - 9b + 2b^2)n + (2 - 2b - b^2)(2 - b)^2] > 0.
\]

With simulation, we can see the pattern of the consumer surplus changes from merger: Given \(\sigma^2/a^2 \)

^{13}We can also prove that “Demand fluctuation is not too severe (more precisely \(\sigma^2/a^2 < 0.44 \)) and market is not too competitive (more precisely \(n \leq 36 \))” is another sufficient condition for industrial profit to increase.
and \(n \), there exists a critical level of \(b \) such that the consumer surplus is higher (lower) after merger if \(b \) is smaller (larger) than the critical level.\(^{14}\)

Figure 1 gives three examples, in which the calculated critical point is a function of \(n \), based on \(\sigma^2/a^2 = 0.2 \), \(\sigma^2/a^2 = 0.4 \), and \(\sigma^2/a^2 = 0.6 \), respectively.

Global welfare. Global welfare consists of consumer surplus and all producers’ profits. Since we have assumed that production costs are zero, the global welfare is simply equal to \(U \).

We are interested in knowing how mergers change global welfare. In the case of no merger, the equilibrium quantities of consumption are given by (4) and (5). Substituting these results in \(U \) yields the global welfare before merger:

\[
U_N = \frac{(n + 1)(3 + bn)a^2}{2(2 + bn)^2} + \frac{(3n + bn^2 + 2 - b)a\theta}{(2 + bn)(2 + bn - b)} + \frac{n(3 + bn - b)}{2(2 + bn - b)^2} \theta^2.
\]

Suppose F0 and F1 engage in the information-sharing merger. Then, the equilibrium quantities of consumption are given by (7), substituting which in \(U \) yields the global welfare under the information-sharing merger:

\[
U_S = \frac{(n + 1)(3 + bn)(a + \theta)^2}{2(2 + bn)^2}.
\]

Finally, let us calculate the global welfare under the full-degree merge. The equilibrium quantities of consumption are given by (2) and (3), substituting which in \(U \) yields

\[
U_M = \frac{[2bn^2 + (6 + 2b - 4b^2)n + 6 - 4b - 5b^2 + 3b^3](a + \theta)^2}{4(2 + bn - b^2)^2}.
\]

In order to understand the effects of the full-degree merger on global welfare, let us examine the separate effects of information sharing and output coordination. First,

\[
E(U_S - U_N) = \frac{b^2(1 - b)n^2 + b(8 - 7b + b^2)n + 3(2 - b)^2}{2(2 + bn)^2(2 + bn - b)^2} \sigma^2.
\]

Note that the numerator is increasing in \(n \) and at \(n = 2 \), it is equal to \(12 + 4b - 7b^2 - 2b^3 > 0 \). Hence, \(E(U_S - U_N) > 0 \). That is, information sharing increases global welfare.

\(^{14}\)Details of the simulation results are available from the authors upon request.
Next,
\[U_M - U_S = -\frac{bG_1}{4(2 + bn)^2(2 + bn - b^2)^2(a + \theta)^2}, \]
where \(G_1 \equiv b^3(1 - b)n^2 + 2b(4 - 3b^2 + b^3)n + 16 - 4b - 12b^2 + 6b^3 \). Note that \(\partial G_1 / \partial n > 0 \) and \(G_1|_{n=2} = 16 + 12b - 12b^2 - 2b^3 > 0 \). Hence \(G_1 > 0 \) for any \(n \) and \(E(U_M - U_S) < 0 \). Output coordination reduces global welfare because it lowers market competition.

As information sharing has a positive effect and output coordination has a negative effect on global welfare, the net effect of the full-degree merger under asymmetric information then depends on the relative degree of these conflicting effects. By calculation, we have
\[E(U_M - U_N) = -\frac{G_2}{4(2 + bn)^2(2 + bn - b^2)^2(2 + bn - b)^2}, \]
where
\[G_2 \equiv -a^2b(2 + bn - b)^2G_1 + (1 - b)(2 + bn)^2H\sigma^2, \]
and
\[H \equiv b^2(2 - 2b^2)n^2 + 2b(8 - 3b - 4b^2 + 2b^3)n + (2 - b)^2(6 + 2b - 3b^2) > 0. \]

Hence, \(\text{sgn}[E(U_M - U_N)] = \text{sgn}(G_2) \). It is clear that \(G_2 < 0 \) if \(\sigma^2 \) is sufficiently low (in which case, the positive benefits from information sharing are small), and \(G_2 > 0 \) if \(\sigma^2 \) is sufficiently large (in which case, the positive benefits from information sharing are large).

With simulation, we can see another pattern of the global welfare changes brought about by merger: \textit{Given} \(\sigma^2/a^2 \) and \(n \), there exists a critical level of \(b \) such that the global welfare is higher (lower) after merger if \(b \) is smaller (larger) than the critical level.\(^{15}\)

Figure 2 gives three examples, in which the calculated critical point is a function of \(n \), based on \(\sigma^2/a^2 = 0.2, \sigma^2/a^2 = 0.4, \) and \(\sigma^2/a^2 = 0.6 \), respectively.

\(<\text{Figure 2 is here}>\)

\[\text{Policy implications}. \] Let us next investigate whether private incentives to merge is compatible with social incentives. Because it is hard to obtain a clear-cut result, we rely on three numerical examples to illustrate the basic points. First, suppose \(\sigma^2/a^2 = 0.6 \) and \(n = 15 \). By calculation, we obtain that \(\Delta \pi^n > 0 \) if and only if \(b \leq 0.61 \) and \(E(U_M - U_N) > 0 \) if and

\(^{15}\)Details of the simulation are available from the authors upon request.
only if $b \leq 0.66$. This indicates that (a) whenever the two firms decide to merge, the merger increases the global welfare, and (b) it is possible that a merger raises the global welfare but the firms do not have incentives to merge, which is the case when $b \in (0.61, 0.66]$.

Second, suppose $\sigma^2/a^2 = 0.3$ and $n = 15$. Then, we have $\Delta \pi^u > 0$ if and only if $b \leq 0.48$ and $E(U_M - U_N) > 0$ if and only if $b \leq 0.46$. That is, when the two firms merge, the global welfare increases in some cases but decreases in others. Hence, sometimes merger should be encouraged and sometimes discouraged. The same qualitative conclusion holds in a third example in which $\sigma^2/a^2 = 0.6$ and $n = 8$. In this case, we have $\Delta \pi^u > 0$ if and only if $b \leq 0.64$ and $E(U_M - U_N) > 0$ if and only if $b \leq 0.61$.

We can draw a hypothesis from the above analysis: *When demand uncertainty is large and market competition is intense, international merger should be encouraged (because mergers are socially desirable but some are not taken up by firms); however, when demand uncertainty is very small and market competition is very weak, international mergers should be discouraged (because mergers occur, but are not socially beneficial).*

Domestic welfare. Finally, let us look at the domestic country’s welfare, which is the global welfare excluding F0’s profit. We will just focus our discussion on the welfare change due to the full-degree merger under asymmetric information. The domestic welfare before merger is $W_N = U_N - \pi^u_0$, where π^u_0 is given by (6). The domestic welfare after merger is $W_M = U_M - \pi^c_0 - \pi^c_1 + \pi^u + \lambda[(\pi^c_0 + \pi^c_1) - (\pi^u + \pi^u)]$, where π^c_i are given by (2), π^u is given by (6), and $\lambda \in [0, 1]$. The result in the square bracket measures the increase in the joint profit of F0 and F1 due to merger and λ captures the share of this profit increase received by firm 1 (through bargaining or some mechanism imbedded in the merger negotiation, which we do not specify). Hence, the welfare effect of the merger can be specified as $W_M - W_N$.

Note that if $\lambda = 1$, then $W_M - W_N = U_M - U_N$, which has been discussed above. The worst situation for the domestic welfare is when $\lambda = 0$. In this case, we have the following result from simulation: *Given σ^2/a^2 and n, there exists a critical level of b such that the domestic welfare is higher (lower) after merger if b is smaller (larger) than the critical level.*

Figure 3 gives three examples, in which the calculated critical point is a function of n, based on $\sigma^2/a^2 = 0.2$, $\sigma^2/a^2 = 0.4$, and $\sigma^2/a^2 = 0.6$, respectively.

<Figure 3 is here>
Summary. We summarize the results of this section in the following table, where + indicates an increase and − a decrease.

<table>
<thead>
<tr>
<th>Merger</th>
<th>industrial profit</th>
<th>consumer surplus</th>
<th>global welfare</th>
<th>domestic welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td>output-coordination</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>information-sharing</td>
<td>+ for small b</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>full-degree</td>
<td>+</td>
<td>+ for small b</td>
<td>+ for small b</td>
<td>+ for small b</td>
</tr>
</tbody>
</table>

6. Concluding Remarks

We have investigated international mergers under asymmetric information by concentrating on two features of a merger, i.e., output coordination and information sharing. We have shown that the foreign firm and a domestic firm always want to share information, but output coordination is not always profitable, depending on the extent of product differentiation. We have also examined how such a merger affects the non-merging firms’ profits, consumer surplus, domestic welfare and global welfare. The extent of product differentiation plays a critical role.

Firms from different countries have different incentives to merge as opposed to firms in the same countries. Because a foreign firm is less likely to be as well informed as a domestic firm about demand in a domestic market, we have emphasized the incentives to share information on market demand in this paper. Firms from different countries also have different corporate cultures, management styles, technologies and market shares. It is interesting to investigate how these differences affect incentives for international mergers.

Appendix

A. Proof of Proposition 1.

Hereafter let a function with a subscript represent partial differentiation, e.g., $Y_b \equiv \partial Y(n, b)/\partial b$. Since $Y_b = 3n^2b^2 - 2(3n^2 - 4n + 4)b - 4(n - 1) = -3n^2b + 4(n - 1)(1 - b) - nb(3n - 4) - 4b < 0$, $Y(n, 0) = 4 > 0$ and $Y(n, 1) = 4 - 2n^2 < 0$, there is a unique $b_0(n) \in (0, 1)$ such that $Y(n, b) > 0$ if and only if $b < b_0(n)$. Note that $b_0(n)$ is defined by $Y(n, b_0) = 0$. By differentiating this condition and rearranging terms, we obtain

$$\frac{db_0(n)}{dn} = -\frac{2b[nb(3 - b) + 2(1 - b)]}{(3n^2b + 4n - 4)(1 - b) + b(3n^2 - 4n + 4)} < 0.$$
Note that $\Delta \pi^c$ and $Y(n,b)$ have the same sign. This completes the proof for part (i).

The proof for part (ii) is straightforward. \(\square\)

B. Proof of Proposition 2.

Part (i). This part is in the text preceding the proposition, particularly (9).

Part (ii). Differentiating (9), denoting $H \equiv E \left[(\pi_0^b + \pi^b) - (\pi_0^u + \pi^u) \right]$, yields

\[
\frac{\partial H}{\partial b} = -2\sigma^2 n(n-1)b[(n^2 - 4n + 2)b^2 + 6(n - 2)b + 12] + 8(n + 1) < 0,
\]

\[
\frac{\partial H}{\partial n} = -2n\sigma^2 [2(n-1)^3 - n^3]b^3 + 6(n^2 - 4n + 2)b^2 + 12(n-2)b + 8 < 0 \quad \text{for } n \geq 3.
\]

When $n = 2$, $\partial H/\partial n$ is increasing in b and the root is $b = 0.7$. \(\square\)

C. Proof of Proposition 3.

Part (i). This part is proven by (11).

Part (ii). The following results are immediately obtained by inspecting (10) and (11):

$\partial E(\pi_0^b - \pi_0^u)/\partial \sigma^2 > 0$, $\partial E(\pi_0^b - \pi_0^u)/\partial n < 0$, $\partial E(\pi_0^u - \pi_0^u)/\partial b < 0$, and $\partial E(\pi^b - \pi^u)/\partial \sigma^2 < 0$.

Differentiating (11) with respect to n yields

\[
\frac{\partial E(\pi^b - \pi^u)}{\partial n} = \frac{2\sigma^2 b^2 [3b^2 n(n-1) + (b - 3)^2 + 3 + 12bn]}{(2 + bn)^3(2 + bn - b)^3} > 0.
\]

Differentiating (11) with respect to b yields

\[
\frac{\partial E(\pi^b - \pi^u)}{\partial b} = \frac{2n(n-1)(6 + 2bn - b)b^2 - 16\sigma^2}{(2 + bn)^3(2 + bn - b)^3}.
\]

It can be shown that the numerator is increasing in $b \in [0, 1]$ and it has a unique root at

\[
\frac{2}{2n-1} \left(\sqrt[2]{\frac{n}{n-1}} + \sqrt[3]{\frac{n-1}{n}} - 1 \right) \in (0, 1). \quad \square
\]

D. Proof of Proposition 4.

It is clear that the sign of $E(\Delta \pi^n)$ is the same as $X(n,b)$, where $X(n,b) \equiv 2(2 + bn - b^2)^2Z(n,b) + (1 + a^2/\sigma^2)b^2(2 + bn - b)^2Y(n,b)$. In what follows, we will examine the sign of $X(n,b)$.

First, recall that $Z_n > 0$ and $Z(n,b) > 0$ for all $n \geq 2$. Also, $Z_b = 2(n - 2)^2b + 4(n - 2 - b)$.

So $Z_b < 0$ for $n \in \{2, 3\}$ but $Z_b > 0$ for all $n > 3$.

Second, recall that the property of $Y(n,b)$ has been derived in the proof of Proposition 1 (See Appendix A).
From the analysis of the three functions $X(n, b), Y(n, b)$ and $Z(n, b)$, we immediately obtain the first result:

$$X(n, b) > 0 \quad \text{for all } b \leq b_0.$$

Finally, let us examine the property of $X(n, b)$ in the region of $b \in (b_0, 1]$, within which $Y(n, b) < 0$.

Because $X(n, b_0) = 2(2 + bn - b^2)^2 z > 0$, $X(n, 1) = -2(k-1)(n^2 - 2)(n + 1)^2 < 0$, and $X(n, b)$ is continuous in b, there exists a $b_1 \in (b_0, 1)$ such that $X(n, b_1) = 0$. We argue that b_1 is the only solution to $X(n, b) = 0$. We will prove this by contradiction.

Suppose there are multiple solutions to $X(n, b) = 0$. We let b_1 denote the smallest one. Then $X(n, b)$ must be decreasing at $b = b_1$, i.e., $X_b(n, b_1) < 0$. Moreover, there is at least another solution (the second smallest one) called $b_2 \in (b_1, 1)$ such that $X(n, b_2) = 0$ and $X(n, b)$ is increasing at $b = b_2$, i.e., $X_b(n, b_2) > 0$.

Denoting $f(n, b) = 2(2 + bn - b^2)^2 Z(n, b)$, and $g(n, b) = b^2(2 + bn - b)^2 Y(n, b)$, we have $X(n, b) = f(n, b) + (1 + a^2/\sigma^2)g(n, b)$ and

$$X_b = f_b + (1 + a^2/\sigma^2)g_b = f_b + \frac{gb}{g(n, b)}[(1 + a^2/\sigma^2)g(n, b)] = f_b + \frac{gb}{g(n, b)}[X(n, b) - f(n, b)].$$

Since $X(n, b_2) = 0$, we find that $X_b(n, b_2) = f_b(n, b_2) - \frac{gb(n, b_2)f(n, b_2)}{g(n, b_2)}$. After some manipulation, we get

$$X_b(n, b_2) = \frac{24(n, b_2) - 32}{b_2(2 + b_2n - b_2^2)},$$

where $h(n, b) \equiv \sum_{i=0}^{7} w_i b^i$, whereas $w_0 = 64, w_1 = 32(5 - 3n), w_2 = 16(6n^2 - 16n + 5), w_3 = 8(20n^3 - 71n^2 + 90n - 42) > 0, w_4 = 52n^4 - 308n^3 + 576n^2 - 504n + 224 > 0$ if $n \geq 4, w_5 = 6n^5 - 60n^4 + 164n^3 - 192n^2 + 132n - 64 > 0$ if and only if $n \geq 7, w_6 = -3n^5 + 15n^4 - 14n^3 + 4 > 0$ if $n = 2, 3, and finally, w_7 = n(n - 1)(n^2 - 4n + 2) > 0$ if $n \geq 4$.

Now let $h_1(n, b) = \frac{1}{16} \sum_{i=0}^{7} w_i b^i = 6b^2n^2 - 2b(3 + 8b)n + (5b^2 + 10b + 4)$). Since $h_1(n, b)$ is quadratic in n, it achieves minimum at $n = (3 + 8b)/6b$, at which $h_1 = \frac{1}{6}(15 + 12b - 34b^2) > 0$. Hence, $h_1(n, b) > 0$.

Now let $h_2 \equiv \sum_{i=3}^{7} w_i b^i$. For $n \geq 7$, since all coefficients of b^i except w_6 are positive, and $w_4 + w_5 + w_6 > 0$, we know that $h_2 > \sum_{i=4}^{6} w_i b^i > (w_4 + w_5 + w_6)b^6 > 0$. For $4 \leq n < 7$, we know $w_5 < 0$ and $w_6 < 0$, but yet $w_4 + w_5 + w_6 > 0$. For $n = 3, w_4 < 0, w_5 < 0$ and $w_7 < 0$, but $w_3 + w_4 + w_5 + w_7 = 448 > 0$. Therefore, $h_2 > 0$ for all $n \geq 3$.

22
The above two paragraphs together show that \(h(n, b) = 16n + 2(n, b) > 0 \) for \(n \geq 3 \) and \(b \in (b_0, 1] \). Because \(Y(n, b_2) < 0 \), \(\frac{h(n, b_2)}{Y(n, b_2)} - 32 < 0 \), which implies that \(X_b(n, b_2) < 0 \) for \(n \geq 3 \).

At \(n = 2 \), we have \(h(n, b) - 32Y(n, b) = -4b^7 + 36b^6 - 24b^5 - 112b^4 - 16b^3 + 208b^2 + 96b - 64 > 0 \) for \(b > b_0 = 0.555 \). Hence, \(X_b(n, b_2) < 0 \) at \(n = 2 \).

Thus, we have shown \(X_b(n, b_2) < 0 \) for all \(n \geq 2 \), which contradicts the supposition of having \(b_2 \) as the second smallest solution to \(X(n, b) = 0 \), with \(X_b(n, b_2) < 0 \).

This proves (12) and Proposition 4. \(\Box \)

E. Proof of Proposition 5.

Using (13) and (14), we obtain

\[
E(\Pi_M - \Pi_N) = \frac{\sigma^2}{(2 + b_n)^2(2 + b_n - b_0)^2} \left[g_1 + k b^2 g_2 \right],
\]

where \(g_1 \equiv (2 - b)^2 - (n^2 + n)b^2 \), \(g_2 \equiv (2 - b)^2(b_n^2 + 2n - 1) + b^2(n^2 - 1) \), and \(k = [(a^2 + \sigma^2)/2\sigma^2][(2 + b_n - b)/(2 + b_n - b_0)^2] \).

Since \(\sigma^2 < a^2 \), \((a^2 + \sigma^2)/2\sigma^2 > 1 \). The function \((2 + b_n - b)^2/(2 + b_n - b_0)^2 \) is increasing in \(n \), but has a U-shape in \(b \). Noting this, we can then easily get \((2 + b_n - b)^2/(2 + b_n - b_0)^2 > 0.825 \) for all \(n \geq 2 \) and \(b \in [0, 1] \). Thus, \(k > 0.825 > 33/40 \).

Because \(g_2 > 0 \), we know \(E(\Pi_M - \Pi_N) > 0 \) if we can show \(3g_1 + 4b^2 g_2 > 0 \). Letting \(x(n) \equiv x_2n^2 + x_1n + x_0 = 40g_1 + 33b^2 g_2 \), we have \(b^2(-40 + 132b - 99b^2 + 33b^3) \), \(x_1 = 2b^2(112 - 132b + 33b^2) \), \(x_0 = 160 - 160b - 92b^2 + 132b^3 - 66b^4 \). We find that \(x_2 \) is positive when \(b > 0.417 \), \(x_2 = 0 \) if \(b = 0.417 \), \(x_1 \) is always positive, and \(x_0 \) is positive when \(b < 0.871 \). Hence, for \(b \in [0.417, 1] \), \(x \) is increasing in \(n \) and \(x(2) = 160 - 160b + 196b^2 + 132b^3 - 330b^4 + 132b^6 > 0 \). This shows that \(x > 0 \) for \(b \in (0.417, 1] \).

For \(b \in [0, 0.417] \), \(x(n) > 0 \) if and only if \(n < n^* = \left(-x_1 + \sqrt{x_1^2 - 4x_0x_2}\right)/2x_2 \). Computer calculation can verify that \(n^* \geq 19.4 \). This shows that \(x > 0 \) for \(b \in [0, 0.417] \) and \(n < 20 \). \(\Box \)
References

Figure 1: Critical Level of b for Consumer Surplus
Figure 2: Critical Level of b for Global Welfare

Figure 3: Critical Level of b for Domestic Welfare