The search for and study of a coupling between the ferroelectric and magnetic orders in ferroelectromagnets, such as the hexagonal manganites, are of both fundamental and applied significance. This is because, by symmetry arguments, such a direct coupling in manganites is highly unlikely. However, it is not inconceivable that, through certain secondary indirect interactions, such a coupling exists and results in a magnetodielectric effect with an interesting device potential in which the dielectric (magnetic) properties can be modified by the onset of a magnetic (dielectric) transition or the application of a magnetic (electric) field. We have therefore examined the dielectric and magnetic properties of hexagonal HoMnO$_3$ single crystals as functions of temperature and magnetic field. Indeed, in the presence of a magnetic field below 4.1 T, we have detected a new reentrant phase in HoMnO$_3$ below its zero-field Mn-spin reorientation transition temperature of 32.8 K, indicative of a coupling between the magnetic and ferroelectric orders and introducing an additional dimension into the intriguing magnetic phase diagram of the compound.

The hexagonal manganites, R MnO$_3$ (R = Sc, Y, Er, Ho, Tm, Yb, Lu), have attracted attention because of a rich variety of antiferromagnetic (AFM) as well as ferroelectric (FE) phases with high FE Curie temperatures between 590 and 1000 K. The AFM order of the Mn spins and/or the R moments (e.g., Ho) is stabilized at lower temperature and coexists with the FE order. The Mn ions form a triangular lattice in which the moments are coupled antiferromagnetically by superexchange via the in-plane oxygen ions. This gives rise to spin-frustration effects and an AFM spin arrangement with neighboring spins rotated by 120°. The magnetic structures have been investigated by neutron scattering and second harmonic generation optical experiments [1–5].

Hexagonal HoMnO$_3$ is FE below 830 K and its Mn sublattices exhibit AFM order below $T_N = 76$ K. A sharp Mn-spin-reorientation transition from $P6_3$ to $P6_3$ magnetic symmetry takes place at $T_{SR} = 33$ K together with another Mn-spin reorientation close to 4 K. In $P6_3$ symmetry 1/3 of the Mn spins are aligned with the crystallographic a axis, whereas in the $P6_3$ phase the Mn spins are rotated in plane by 90°. The compound possesses a very interesting reentrant magnetic phase diagram [5]. In addition to the Mn-spin ordering, neutron scattering experiments suggested an AFM ordering of part of the Ho spins with the principal spin direction along the c axis below or close to T_{SR} [2,3]. The AFM orders below T_N clearly coexist with the FE order. Although the direct coupling between the in-plane staggered magnetization and the polarization is not allowed by symmetry [6], the indirect coupling via lattice strain or other effects may lead to anomalies in the dielectric constant $\varepsilon(T)$ in passing through the magnetic transitions. The first search for the magnetodielectric coupling detected a small anomaly of ε at T_N in YMnO$_3$ [7]. Similar anomalies were later found in other hexagonal manganites [1,8,9]. Very recently a correlation between the FE and AFM domain walls was shown to exist in YMnO$_3$, providing further evidence of a coupling between the two orders [10]. Similar coupling is therefore expected to exist in HoMnO$_3$ and to give rise to novel phenomena due to the complex magnetic phase diagram of the compound.

Well shaped platelike single crystals of HoMnO$_3$ of 2.5 \times 2.5 mm2 in size and between 50 and 300 μm thick were prepared as described elsewhere [11]. Magnetization measurements were conducted using the Magnetic Property Measurement System (Quantum Design) with the field parallel and perpendicular to the c axis. The capacitance of two crystals (70 and 240 μm thick) with gold pads sputtered onto two parallel faces was measured using the K-3330 and HP-4285A LCZ meters at frequencies between 10 kHz and 1 MHz. The Physical Property...
Measurement System (Quantum Design) was employed to control temperature and magnetic field up to 7 T.

The c-axis dielectric constant $\varepsilon(T)$ of HoMnO$_3$ at zero magnetic field is shown in Fig. 1. The small anomaly of $\varepsilon(T)$ at $T_N = 76$ K is in agreement with previous reports [1,8]. Additionally, a sharp peak (width <0.6 K, $\sim 5\%$ of the base ε) at 32.8 K is unambiguously detected for the first time. The peak position and its relative magnitude are independent of the measurement frequency, suggesting that the peak is related to a phase transition in the magnetic subsystem. The Mn-spin rotation transition was previously observed in HoMnO$_3$ at a T_{SR} varying between 33 and 45 K, depending on the sample quality and the measurement techniques. The recent investigation of the magnetic phase diagram of single-crystalline HoMnO$_3$ [5] gives a $T_{\text{SR}} = 32.8$ K, precisely the temperature at which the ε peak is observed by us. We have therefore associated the ε peak with the Mn-spin-reorientation transition.

In a magnetic field H parallel to the c axis the ε anomaly broadens and evolves into a plateau-like structure with a sharp increase at $T_1(H)$ and a quick drop at $T_2(H)$. The $\varepsilon(T)$'s at different magnetic fields are shown in Fig. 2 with their vertical axes shifted for clarity. While the overall ε anomaly decreases and both T_1 and T_2 move toward lower T with H, the $\varepsilon(T)$ outside the peak is not affected at all by H. The values of $\varepsilon(T)$ on both sides of the peaks are the same for all data sets and coincide with curve 5 in Fig. 2. At higher fields a second ε plateau develops at lower T as demonstrated by the 3.3 T data [curve 3 in Fig. 2]. With further increasing H the two plateaus move toward one another and merge at 3.5 T, forming one single broad feature with a width of 15 K (curve 4 at 3.7 T). The anomaly disappears completely above 4.1 T (curve 5). All measurements were done with increasing as well as decreasing T and no hysteresis was detected. The results are summarized as open circles in Fig. 3, showing T_1 and T_2 as functions of H. Both T_2 and T_1 exhibit reentrance and disappear at fields exceeding 3.5 and 4.1 T, respectively. They separate the novel phase (I phase) from the $P_{\text{Sr}}cm$ and the $P_{\text{B}}cem$ phases. The ε value of the I phase, characterized by the ε plateau, decreases smoothly with T as $(T_c - T)^{-\alpha}$ with $\alpha = 0.01$ and $T_c = 32.8$ K (see the inset of Fig. 2). The $T_1(H)$ and $T_2(H)$ curves are similar to the phase boundary between the AFM (B_1) and the AFM (B_2) in Ref. [5] above 8 K, the present experimental limit for our dielectric measurements. The reentrant field in Ref. [5] is ~ 3.8 T, falling between the 3.5 and 4.1 T observed by us. This makes it difficult to assign the phase boundary in Ref. [5] to T_1 or T_2.

To verify the data of Fig. 3 and to support our conclusion about the existence of an intermediate phase, we have conducted isothermal measurements of $\varepsilon(H)$ that

![FIG. 1. Low-temperature dielectric constant of HoMnO$_3$ showing two anomalies at the onset of magnetic order (T_N) and the spin rotation transition (T_{SR}). Inset: details of the peak at T_{SR}.](087204-2)

![FIG. 2. $\varepsilon(T)$ for selected external magnetic fields H. (1) $H = 0$, (2) $H = 2.6$ T, (3) $H = 3.3$ T, (4) $H = 3.7$ T, (5) $H = 4.1$ T. Different curves are offset by a constant (indicated by dotted lines). T_1 and T_2 are marked by vertical bars next to curve 3. Inset: all data plotted on the same scale.](087204-2)
should show similar anomalies as the phase boundaries are crossed. $\epsilon(H)$ is displayed in Fig. 4 for three temperatures. Each isothermal $\epsilon(H)$ shows the expected enhancement in the I phase with only one pronounced plateau like structure. The H dependence of ϵ within each phase ($P6_3cm$, I phase, and $P6_3cm$) is weak, as already suggested from the data of Fig. 2. The two transitions at H_2 (low field edge) and H_1 (high field edge) are included as solid circles in Fig. 3 and they are in perfect agreement with the results obtained from $\epsilon(T)$ at constant H. The data show no hysteresis at the transitions with increasing and decreasing H.

In an attempt to determine the origin of the dielectric anomaly associated with the I phase, we examined the magnetic ordering of the Ho and Mn ions. An AFM order of the Ho spins along the c axis was detected in neutron scattering experiments below 25 K [3], as well as below 32.5 K [2]. The details of this AFM order of the Ho spins are not yet resolved. Reference [3] suggested that only $2/3$ of the Ho moments participate in this ordering, leaving $1/3$ of Ho spins disordered with a large paramagnetic contribution to the dc susceptibility, as observed in magnetic measurements [1,3]. It is also not clear how the Ho-spin ordering is correlated with the Mn-spin rotation transition that stretches between 32.5 and 42 K in the neutron scattering studies of polycrystalline samples [2], in contrast to the results from single crystals in which the spin rotation transition is very sharp in zero field and appears close to 32.8 K [5]. Ho-spin ordering is expected to affect the c-axis magnetic susceptibility χ_c. We have therefore conducted magnetization measurements on our HoMnO$_3$ single crystals with the external magnetic field parallel and perpendicular to the c axis. Indeed, for the first time, we found a small but distinct leveling off of χ_c over a narrow temperature range (<1 K), as indicated by the arrow in Fig. 5 (enlarged in the lower inset). The anomaly is very sharp (as shown by $d\chi_c/dT$, upper inset of Fig. 5) and appears at exactly the same temperature (32.8 K) as the peak of $\epsilon(T)$ at zero field. When an external

![FIG. 3. Low-temperature magnetic phase diagram of HoMnO$_3$. Open circles: data from $\epsilon(T)$ scans. Solid circles: data from isothermal field scans $\epsilon(H)$. Solid stars: anomalies of the c-axis magnetic susceptibility. Dotted line: phase boundary according to Ref. [5].](image)

![FIG. 4. $\epsilon(H)$ for three selected temperatures. For the 26 K data the two transitions at H_2 and H_1 are indicated by vertical arrows.](image)

![FIG. 5. c-axis magnetic susceptibility of HoMnO$_3$. The arrow shows the anomaly associated with the AFM ordering of the Ho spins. Lower left inset: enlargement of the critical range. The derivative (upper right inset) shows a sharp peak at T_{SR}.](image)
The authors thank M. Iliev for stimulating discussions. This work is supported in part by NSF Grant No. DMR-9804325, the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, the State of Texas through TCSAM, and at Lawrence Berkeley Laboratory by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. The work of M. M. G. is supported by the Bulgarian Science Fund Grant No. F 1207.