ψ Spectroscopy of a Charm String*

R. C. Giles and S.-H. H. Tye

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

(Received 13 August 1976)

We report the results of the application of the quark-confining string to the ψ spectrum. The model is defined by a relativistically invariant action of quarks and color gauge fields. In the Schrödinger limit, where light quarks are neglected, this model (with two parameters) reduced to the charmonium model (with a linearly rising potential) plus additional vibrational levels. In the e⁺e⁻ channel, the first vibrational levels come at about 4.0 and 4.4 GeV.

This Letter outlines and summarizes the results of calculations of the ψ spectrum in the quark-confining string (QCS) model recently proposed by one of us (S.-H.H.T.). This model attempts to synthesize two-dimensional (2D) quantum chromodynamics (QCD) and the string model. It is hoped that this synthesis will provide a model of hadron dynamics which maintains the desirable features of two-dimensional QCD and of the string, and in which meaningful calculations can be performed.

In 2D QCD, quark confinement follows from the presence of the linearly rising Coulomb potential; there are no massless gluons; in the 1/N approximation at least [for color SU(N)], the theory is asymptotically free and exhibits scaling, the Okubo-Zweig-Iizuka rule, and powerlike form factors. The world, on the other hand, is four dimensional. Unfortunately, to demonstrate quark confinement in 4D QCD and then calculate in a believable way its properties is a very formidable challenge. QCS provides a different approach to the problem of 4D chromodynamics.

The geometric formalism of the Nambu-Goto (N-G) string describes the dynamics of a one space-, one time-dimensional world sheet of constant energy density embedded in higher (e.g., four) space-time dimensions. We use such a geometric formalism to lift 2D QCD to 4D Minkowski space. The resulting QCS describes 2D QCD on such a world sheet embedded in Minkowski space. Relativistic invariance requires the quarks to be four-component Dirac fields.

Classical QCS is defined by the action

\[S = \int d^2u (-g)^{1/2} \sqrt{g} \left(\frac{1}{2} \overline{\psi} \gamma^\mu \partial_\mu \psi - g \alpha \cdot \psi - \frac{1}{2} F^a_{\alpha \beta} F^{a \alpha \beta} \right), \tag{1} \]

where coordinates \(u^\mu \) and \(u^\nu \) parametrize the embedding \(R_\mu (u), \) \(\mu = 0, 1, 2, 3, \) of the string in four dimensions. The local geometry of this embedding is described by the tangent vectors \(\tau_\alpha \) \(= (\partial R^\alpha / \partial u^\mu) \) \(\tau_\alpha \) \(= \gamma_\mu \tau^\mu \alpha, \) the induced metric \(g_{\alpha \beta} \) \(= \tau_\alpha \cdot \tau_\beta, \) \(g = \text{det} (g_{\alpha \beta}), \) and its inverse \(g^{\alpha \beta} = g_{\alpha \beta}^{-1} \) with \(\tau_\mu = g^{\mu \nu} \tau_\nu. \) The quark fields \(\psi \) are color triplets of four-component fermions. They come in different flavors. \(\{ B_{\alpha}^a (u); \alpha = 0, 1; a = 1, 2, \ldots, 8 \} \) are 2D color SU(3) gauge fields. The parameters are the quark masses \(m_j (j \) is the flavor index) and the quark-gluon coupling constant \(\alpha. \)

The action (1) is invariant under reparameterization and Lorentz and gauge transformations. The string coordinates are unbounded and the embedding is taken to be topologically equivalent to 2D Minkowski space. If the embedding were in two-dimensional Minkowski space, the action (1) would be identical to that of 2D QCD in the coordinate system \(R^0 = u^0, \) \(R^1 = u^1 \) (where \(-g = 1). \) Indeed, in the absence of string dynamics (i.e., no curvature), QCS is equivalent to 2D QCD with four-component quarks.

The motions of the string are determined by the energy-momentum distribution on its surface. In the case of the N-G string, \(S_{N-G} = \int d^2u (-g)^{1/2} (-L), \) the constant energy density \(C \) is introduced as the fundamental parameter which characterizes the spectrum. It is related to the Regge slope, \(\alpha' = 1/2 \pi \alpha. \) In QCS, there is no independent string constant. The field energy-momentum density plays a role analogous to the string constant of the N-G string. In a classical picture with quarks and antiquarks represented by wave packets along the string, physical color-singlet solutions appear as in Fig. 1. In particular, a \(q \bar{q} \) pair generates a constant energy density between them due to the color electric flux.

A key difference between the standard QCD and QCS is that the latter has no independent gluonic degrees of freedom; this implies, in particular, that there are no glueballs. Hence, if QCS is to
be considered as a phenomenological model derivable from QCD, the derivation must be highly nontrivial. For practical purposes, we take QCS as a working model where various properties can be calculated.

Electromagnetic and weak interactions can be introduced easily via minimal coupling to the quarks. Intuitively, many of the parton-model properties are expected (e.g., the jet structure); in particular, the (neutral) string degrees of freedom carry a finite fraction of the momentum in the infinite-momentum frame. The quark-gluon interaction leads to nontrivial quark-quark scatterings within a string which may characterize hadron-hadron scattering. Since the action (1) is reparametrization invariant, duality in scattering amplitudes might be expected in a consistent quantum theory. Regge trajectories are asymptotically straight.

In this Letter we report the results of a preliminary investigation of QCS, namely, its nonrelativistic (i.e., Schrödinger) limit applied to the \(\psi \) spectrum recently discovered at SPEAR and elsewhere.\(^1\) Since we shall limit ourselves to the study of the \(\psi \) spectrum only, we can neglect all flavors except charm.\(^8\) We refer to the resulting string as the charm string. The nonrelativistic limit is that in which the quark mass is large compared to \(e \). We consider the charm string in two steps.

First, we consider the charm string in the absence of string vibrations. In this restricted case, the nonrelativistic string is straight and its motions consist only of translations and rotations. The resulting Schrödinger equation for the \(\psi \)-meson bound-state wave function along the string, \(f(r) \) (where \(r \) is the distance between the charmed quark and antiquark), is

\[
\left[-\frac{1}{m} \frac{\partial^2}{\partial r^2} + \frac{l(l+1)}{m r^2} \right] f(r) = E f(r),
\]

where the state has mass \(E \). This is equivalent to the charmonium model\(^9\) that has been studied extensively in relation to the \(\psi \) spectroscopy. \(l = 0, 1, 2, \ldots \) is the orbital angular momentum and \(k = \frac{1}{2} \sqrt{\frac{1}{2} (2e^2 - 1)} \). The simple Schrödinger equation (2) arises from the action (1) only after rather tedious algebra. The essential elements of the derivation are as follows:\(^7\): (a) Assume that the string is straight in the rest frame of the meson and is therefore described only by its position and orientation. (b) Transform the Dirac field \(\psi \) by a local boost, \(\psi(u) = S(u^2) \chi(u^2) \). Qualitatively, \(\chi \) is the wave function of the quark in the local rest frame of the string. (c) Perform a Foldy-Wouthuysen transformation on \(\chi \) to separate the nonrelativistic quark and antiquark wave functions. Drop all relativistic correction terms and spin effects. Approximate the \(q\bar{q} \) interaction by the instantaneous (linear) Coulomb interaction. We choose the gauge \(B_\nu = 0 \). (d) Introduce the \(q\bar{q} \) bound-state wave function and quantize the string position and orientation. In the zero-momentum frame, the orbital angular momentum is quantized with integer values \(l \). (e) Demonstrate that the 1D relative wave function \(f(r) \) is related to the usual 3D relative wave function by

\[
\psi_{q\bar{q}}(r, \theta, \phi) = \left[f(r) \right] Y^m_l (\theta, \phi).
\]

Next we consider the vibrational modes. This is more difficult to tackle; instead of solving the nonlinear coupled string and Dirac equations, we content ourselves with a crude estimate of the vibrational energy as a function of \(q\bar{q} \) separation, \(r \), and insert it as an effective potential into the Schrödinger equation:

\[
\left\{ -\frac{1}{m} \frac{\partial^2}{\partial r^2} + V_n(r) \right\} f(r) = Ef(r),
\]

where \(n \) is the vibrational-mode quantum number,

\[
V_n(r) = kr(2 - \alpha_n^2)^{1/2},
\]

\[
\alpha_n^2 = 1 + \frac{2n\pi}{2m\pi + k[(r - 2d)^2 + 4d^2]}.
\]

\(d \) is the correction due to the finite quark mass and is given by \(1 < \alpha_n^2 \leq 2 \)

\[
d(r) = \frac{1}{2} kr^2 \alpha_n (2m + kr\alpha_n)^{-1}.
\]

For \(n = 0 \), \(\alpha_n^2 = 1 \) and \(V_n(r) = kr \) so that we get
back the derivation of the charmronium equation (2). The key steps of the derivation of $V_a(r)$ are (i) to put the quark and the antiquark at the two ends of the string, and (ii) to go to the center-of-mass frame and quantize the vibrational modes via the Bohr-Sommerfeld approximation.

We note that QCS after the set of approximations leading to Eq. (3) amounts to the consideration of the string model with quarks at the ends of the string. We have two parameters, m and k. They are fitted by the masses of $\psi(3.095)$ and $\psi'(3.684)$ so that $m=1.154$ GeV and $k=0.21$ GeV2 ($\epsilon=0.8$ GeV). The levels of the charm string equation (3) are shown in Fig. 2. All states are further split by spin effects. The $n \neq 0$, $l \neq 0$ levels actually have couplings between the vibrational and the rotational modes, which have been neglected. The vibrational levels (that are absent in charmonium) start coming in at around 4 GeV. Comparing the wave functions at the origin, we expect the vibrational states to have smaller lepton-like widths. For higher-energy states, the Schrödinger approximation breaks down. The density of states also increases rapidly as we go to higher energies. A simple estimate gives the asymptotic Regge slope $\alpha' \approx (2\pi k)^{-1} \approx 0.8$ GeV$^{-2}$. In QCS, this is the universal Regge slope. (A better estimate of α' requires the inclusion of the relativistic corrections in fitting ψ and ψ' and the spreading of quark wave function instead of treating it as pointlike in the string equation.)

To check the validity of the Schrödinger approximation, we have calculated some of the relativistic corrections and find that they are small. In particular, the $S \cdot L$ (spin-orbit) splitting of the $1P$ state is of the order

$$E(l=1, J=2) - E(l=1, J=0) \approx 0.14 \text{ GeV}.$$

On comparison of this with the binding energy $|E(l=1) - 2m| \approx 1.1$ GeV, the nonrelativistic approximation is justified a posteriori. To test the validity of QCS, it is important to complete the leading-order relativistic-correction (e.g., spin-spin splitting) calculation for the charm string and compare with the data.

To summarize, we note that the charmonium model with a linearly rising potential can be obtained from a relativistically invariant, field-theoretic (albeit unconventional) model. Furthermore, relativity requires the introduction of string variables (via $F_{a\epsilon\delta}$) which give additional physical states even in the Schrödinger limit.

Tripletsingle, tensor, and spin-orbit splittings are expected to occur in the levels shown in Fig. 2 as a result of relativistic corrections, which are, in principle, determined by the action (1). Even in the absence of the evaluation of such terms, we see that the spectrum of the charm string has some attractive features vis à vis the data. Namely, we expect resonance structures around and above 4 GeV due to vibrational excitations of the ψ and ψ'. In this region, one also expects structures due to charm thresholds (and possibly $S-D$ mixing). Whether the observed structure can be entirely accounted for in this way remains to be seen. We note one prediction at this stage: There are two states around 4.4 GeV in the e^+e^- channel.

We thank our colleagues, especially J. D. Bjorken, S. D. Drell, F. J. Gilman, A. Hanson, and H. C. Tze, for useful discussions.

*Work supported by the U. S. Energy Research and Development Administration.

3 G. 't Hooft, Nucl. Phys. B75, 461 (1974); C. G. Callan, N. Coote, and D. J. Gross, Phys. Rev. D 13, 1649 (1976); M. B. Einhorn, to be published. There are numerous attempts in this direction; e.g.,
Limits on Production of Charmed Particles by Antiprotons and Pions*

R. Cester, V. L. Fitch, R. W. Kadel, R. C. Webb, J. D. Whittaker, and M. S. Witherell

Department of Physics, Princeton University, Princeton, New Jersey 08540

M. May

Brookhaven National Laboratory, Upton, New York 11793
(Received 19 August 1976)

We have searched in the mass range $1.8 < M < 2.5$ GeV for narrow resonances produced by antiprotons and pions of momentum $12.4 \rightarrow 15.0$ GeV/c interacting in a carbon target. We present upper limits on the production cross section times branching ratio for charmed mesons decaying into two charged particles.

We report here the results of a search for narrow resonances in the mass range $1.8 < M < 2.5$ GeV produced in \bar{p}- or π^--nucleon interactions at a center-of-mass energy of ~5 GeV. The current interest in charmed mesons directly stimulated the present experiment. The reaction

$$\bar{p} + N \rightarrow D^0 + \bar{D}$$

(1)

is an especially favorable source of such particles. (Here D is the pseudoscalar charmed meson, as in Gaillard et al., Ref. 1.) It can reasonably be expected that the exclusive production cross section would rise rapidly from threshold, as it does with other mesons. Correspondingly, the reaction would provide a source of such particles with a minimum of background. No search of comparable sensitivity has been reported for either the $\bar{p}N$ or π^-N initial state.2

The experiment was carried out at the Brookhaven National Laboratory alternating gradient synchrotron (AGS) in the high-energy unseparated beam. The apparatus, Fig. 1, consisted of a double-arm spectrometer symmetric about the beam axis. The angle of each arm was fixed at 18°, and the beam momenta used were 12.4 and 15.0 GeV/c. The acceptance of D's produced in the exclusive reaction (1) was a fairly sharp function of the mass for a given beam momentum. The angle of 18° maximized the acceptance at a mass of about 2.3 GeV for the detected particle. The incident beam was operated at a flux of $\approx 10^6$ particles per beam spill within a momentum bite of ±2%. The fraction of the beam which was antiproton was about 5×10^{-3} at 12.4 GeV/c and 3×10^{-3} at 15 GeV/c. A high-pressure differential Čerenkov counter identified antiprotons with a typical pion rejection factor of 5×10^{-4}.

A large geometrical acceptance (2×10^{-2} sr per