Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin-orbit coupling

T.-P. Choy, J. M. Edge, A. R. Akkermans, and C. W. J. Beenakker

Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, NL-2300 RA Leiden, The Netherlands

(Received 5 August 2011; revised manuscript received 25 October 2011; published 9 November 2011)

There exists a variety of proposals to transform a conventional s-wave superconductor into a topological superconductor, supporting Majorana fermion midgap states. A necessary ingredient of these proposals is strong spin-orbit coupling. Here we propose an alternative system consisting of a one-dimensional chain of magnetic nanoparticles on a superconducting substrate. No spin-orbit coupling in the superconductor is needed. We calculate the topological quantum number of a chain of finite length, including the competing effects of disorder in the orientation of the magnetic moments and in the hopping energies, to identify the transition into the topologically nontrivial state (with Majorana fermions at the end points of the chain).

DOI: 10.1103/PhysRevB.84.195442 PACS number(s): 74.45.+c, 74.78.Na, 75.30.Hx, 75.75.Lf

I. INTRODUCTION

The search for Majorana fermions in superconducting nanowires is both rewarding and difficult.1–3 These nondegenerate midgap states at the end points of the wire require that the s-wave proximity effect coexists with broken time-reversal and spin-rotation symmetries, which together can drive the superconductor into a topologically nontrivial phase.4 While the former symmetry can be readily broken by a magnetic field, it has been argued that Rashba spin-orbit coupling is too weak to effectively break the latter symmetry.5 We are optimistic that some variation on the InAs nanowire proposal6,7 will be successfully realized, but alternative proposals8–14 continue to play an important role.

In this paper we propose a route to Majorana fermions in s-wave superconductors that does not at all require materials with spin-orbit coupling. (Alternative approaches exist in cold atomic gases.15,16) We consider a one-dimensional chain of magnetic nanoparticles (magnetic dots17) on a superconducting substrate (see Fig. 1). The nanoparticles create bound states in the superconducting gap, having a nonzero magnetic moment.18–20 The magnetic moment breaks time-reversal symmetry as well as spin-rotation symmetry, without the need for spin-orbit coupling in the superconductor.

As we will show, the transition into the topologically nontrivial phase is governed by the competition of two types of disorder: On the one hand, a variation in the orientation of the magnetic moments on nearby nanoparticles is needed to open a gap in the excitation spectrum21—which is a prerequisite for a topological phase. On the other hand, disorder in the hopping energies localizes the states on short segments of the chain—suppressing the superconducting order needed for the topological phase.

In the next section we introduce the model of a chain of magnetic nanoparticles on a superconductor, and then in Sec. III we use scattering theory22 to calculate the topological quantum number of a finite chain, including the competing effects of magnetic and hopping disorder. As shown in Sec. IV, we find a substantial region in parameter space that is topologically nontrivial (and thus has Majorana fermions at the end points of the chain).

II. MODEL OF MAGNETIC NANOPARTICLES ON A SUPERCONDUCTOR

A. Hamiltonian

For each magnetic nanoparticle on top of the superconductor we consider a single electronic orbital near the Fermi level μ, with spin α coupled to the local magnetic moment through an effective magnetic or exchange field Bα. We set h and the Zeeman energy gμB both equal to unity, so Bα is measured in units of energy. We assume that the magnetic moment has the same magnitude B0 = |Bα| on each nanoparticle, varying only in the orientation. States on neighboring nanoparticles n, n + 1 are coupled by a hopping energy tα, where the n dependence accounts for variations in the nanoparticle spacing.

The superconducting substrate induces a spin-singlet pairing energy Δα on the nanoparticles, taken as n independent. We assume for simplicity that there is only a single electronic orbital within an energy range Δα from μ, but this is not an essential assumption. The electrostatic potential induced by the superconductor is also taken as n independent, so that it simply gives an offset to μ. (Essentially, the Fermi level of the nanoparticles is pinned by the superconductor.) The charging energy ε0/C is unimportant because the nanoparticle is strongly coupled to the superconductor.

The Hamiltonian of this model is given by

\[H = \sum_{\alpha} \left(\left(\breve{f}^\dagger \breve{f} + H.c. \right) - \mu \sum_{\alpha} f^\dagger f \right) + \sum_{\alpha} \left(B_\alpha \cdot \sigma \right) f^\dagger f + \sum_{\alpha} \left(\Delta_\alpha f^\dagger_{n+1} f^\dagger_n + H.c. \right). \]

(2.1)

where the abbreviation H.c. stands for Hermitian conjugate. The operator fα is the fermion operator for a spin-α electron on the nth nanoparticle and σ = (σx, σy, σz) denotes the vector of Pauli matrices. The magnetic moments are taken as frozen, without any dynamics of their own.

Upon transformation to the Bogoliubov basis \(\Psi_n = (f^\dagger_n, f^\dagger_{n+1}, f^\dagger_{n+2}) \), the Hamiltonian takes the form

\[H = \sum_n \left(\left(\Psi_n \cdot \hat{h}_n \Psi_{n+1} + H.c. \right) + \Psi_n^\dagger \hat{h}_n \Psi_n \right). \]

(2.2)
Kitaev’s spinless rotation symmetry, but it does satisfy the particle-hole symmetry respectively.

The Pauli matrices \(\frac{\Delta_0}{\Delta_0} \), act on the spin space and particle-hole space, respectively.

The matrices \(\frac{\Delta_0}{\Delta_0} \) and \(\frac{\Delta_0}{\Delta_0} \), with coefficients defined in Appendix A. The effective pair correlation (strongly correlated for small \(\delta_b \)).

III. SCATTERING MATRIX

To identify the topologically nontrivial phase of a finite disordered chain of \(N \) nanoparticles it is more efficient to work with the scattering matrix than the Hamiltonian.\(^{22}\) The scattering matrix \(S \) relates incoming and outgoing wave amplitudes at the Fermi level. The waves can come in from the left end or from the right end of the chain, in two spin directions and as electron or hole, so \(S \) is an \(8 \times 8 \) unitary matrix. Its \(4 \times 4 \) subblocks are the reflection and transmission matrices,

\[
S = \begin{pmatrix} R & T' \\ T & R' \end{pmatrix}. \tag{3.1}
\]

Particle-hole symmetry (2.5) requires that

\[
\chi' = \sigma_y \tau_y \chi^* \sigma_y \tau_y, \quad \chi' = \{R, R', T, T'\}. \tag{3.2}
\]

Following Ref. 24 we calculate the scattering matrix by writing the tight-binding equations at the Fermi level in the form

\[
\begin{pmatrix} \hat{i}_n \Phi_n \\ \Phi_{n+1} \end{pmatrix} = M_n \begin{pmatrix} \hat{i}_{n-1} \Phi_{n-1} \\ \Phi_n \end{pmatrix}, \tag{3.3a}
\]

\[
M_n = \begin{pmatrix} 0 & \hat{i}_n \\ \hat{i}_{n-1} & -\hat{i}_n \hat{i}_n \end{pmatrix}. \tag{3.3b}
\]

where \(\Phi_n \) is a four-component vector of wave amplitudes on site \(n \). (Sites \(n = 0 \) and \(n = N + 1 \) represent electron reservoirs.) Waves at the two ends of the chain are related by the transfer matrix\(^{25}\)

\[
M = M_{N+1} M_{N} \cdots M_2 M_1. \tag{3.4}
\]

Current conservation is expressed by the identity

\[
M_n \Sigma_y M_n = \Sigma_y, \quad \Sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}. \tag{3.5}
\]
We transform to a new basis with right-moving and left-moving waves separated in the upper and lower four components, by means of the unitary transformation

\[\tilde{M} = U^\dagger M U, \quad U = \sqrt{\frac{1}{2}} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}. \]

The current conservation relation (3.5) transforms to

\[\tilde{M}^\dagger \Sigma \tilde{M} = \Sigma^z. \]

In this basis the transmission and reflection matrices follow from

\[\begin{pmatrix} T \\ 0 \end{pmatrix} = \tilde{M} \begin{pmatrix} 1 \\ R \end{pmatrix}, \quad \begin{pmatrix} R' \\ 1 \end{pmatrix} = \tilde{M} \begin{pmatrix} 0 \\ T' \end{pmatrix}. \]

Unitarity together with particle-hole symmetry (3.2) ensure that the determinants of \(R \) and \(R' \) are identical real numbers.

\[Q = \text{sgn} \det R. \]

As shown in Ref. 22, Majorana bound states exist at the end points of the chain if and only if \(Q = -1 \), so this identifies the topologically nontrivial phase.

IV. PHASE DIAGRAM

Results of our search for a topologically nontrivial phase are shown in Figs. 2–4. We have kept \(B_0 = 2t_0 \) fixed and varied the material parameters \(\Delta_0, \mu \) as well as the disorder parameters \(\delta_b, \delta_t \). The color scale Figs. 3 and 4 of \(\det r \) show the topologically nontrivial region emerging as a black island (\(\det r = -1 \)) in a yellow background (\(\det r = 1 \)). These are plots for a single disorder realization and a single system size (\(N = 6000 \)). The \(N \) dependence of the ensemble average (\(\det r \)) is plotted in Fig. 2, to show how the transition becomes sharper with increasing system size.

The competing effects of the two types of disorder are evident in the phase diagrams. We see that the topologically nontrivial region is largest for \(\delta_t \) equal to zero and \(\delta_b \) small but not too small. Disorder in the hopping energies or in the magnetic moments causes localization, which reduces the nontrivial region (mainly on the small \(\Delta_0 \) side). Some disorder in the orientation of the magnetization is needed to open a gap in the spectrum, so while the optimal value of \(\delta_t \) equals zero, the optimal value of \(\delta_b \) is small but nonzero.

To obtain more insight in the \(\Delta_0 \) and \(\mu \) dependence of the phase diagram, we have calculated the phase boundary by the method of self-consistent Born approximation (SCBA). As shown in Ref. 27 for a different system, the SCBA can locate the gap inversion associated with the topologically nontrivial region.
phase. The calculation is described in Appendix B and the result is shown in Fig. 3 (red dashed curve in top panel), for a system without disorder in the hopping energies ($\delta_2 = 0$) and with random and uncorrelated directions of the magnetic moments ($\delta_0 = \infty$).

The SCBA describes reasonably well, without any adjustable parameters, the location of the phase boundary at large Δ_0. The phase boundary at small Δ_0 is not recovered by the SCBA. Our explanation is that the former phase boundary is due to gap inversion, while the latter phase boundary is due to localization (which is beyond the reach of the SCBA).

V. CONCLUSION

In conclusion, we have proposed to create Majorana fermions by depositing magnetic nanoparticles on a superconducting substrate. The superconductor has conventional s-wave pairing and need not have any spin-orbit coupling. The candidate material for the magnetic nanoparticles is iron or nickel. For the superconductor one could choose lead, with a coherence length $\xi \simeq 80$ nm and a critical temperature $T_c \simeq 7$ K. For 10-nm size nanoparticles the level spacing is comparable to the superconducting gap, so we need only consider a single electronic orbital per nanoparticle.

The magnetic moments of nearby nanoparticles (spacing small compared to ξ) are correlated by dipolar interactions. As we have found, a strong correlation in the orientation of the magnetic moments ($\delta_0 \ll 1$) does not preclude the appearance of a topologically nontrivial phase—only a nearly complete alignment suppresses it.

The most stringent requirement is the need to have little disorder in the hopping energies, since in this one-dimensional system the localization length is of the order of the mean free path and hence severely limited by disorder. The spacing of the nanoparticles should therefore be uniform on the scale of the wavelength of the electronic orbital (typically a few nm). Nanoparticle arrays can be highly monodisperse (with a subnanometer size and spacing variation), so this should be within experimental reach.

![Figure 5](image-url)

FIG. 5. (Color online) Excitation spectrum (black solid curves) of two magnetic particles with an angle $\theta = 70^\circ$ between their magnetic moments, calculated from the Hamiltonian (2.1) at fixed $\mu = B_0 = 2\Delta_0$ as a function of the hopping energy t_0. The level crossings at the Fermi energy do not split because the ground states at the two sides of the crossing differ in fermion parity $P \in \{0, 1\}$ [red dashed curve, calculated from the Pfaffian of the antisymmetrized Hamiltonian, $P = \frac{1}{2} - \frac{1}{2} \text{sgn Pf}(\sigma, \tau, H)$].

While a long chain of nanoparticles (much longer than ξ) is needed to create a pair of weakly coupled Majorana fermions at the end points, a signature of a topological phase transition can be identified even if one has only a few nanoparticles. This signature is a protected level crossing at the Fermi level, which signals a change in the fermion parity of the ground state. We show this feature in Fig. 5, for the simplest case of just two nanoparticles with a noncollinear magnetization. Nanoparticle-induced bound states within the superconducting gap have been resolved by scanning tunneling microscopy, for a Mn dimer adsorbed on a Pb superconducting thin film. We predict level crossings at the Fermi energy ($E = 0$) upon variation of the spacing of the two magnetic atoms, as a signature of the switch from an even to an odd number of electrons in the ground state.

ACKNOWLEDGMENTS

We have benefited from discussions with H. Manoharan. This research was supported by the Dutch Science Foundation NWO/FOM, by an ERC Advanced Investigator Grant, and by the EU network NanoCTM.

APPENDIX A: RELATIONSHIP TO KITAEV’S MODEL

We establish the relationship between the tight-binding model (2.1) of electrons coupled to an s-wave superconducting order parameter and to a randomly oriented magnetization on the one hand, and Kitaev’s model of a spinless p-wave chain on the other hand.

The magnetic moment $B_n = B_0 \hat{b}_n$ on the nth nanoparticle has fixed magnitude B_0 and orientation $\hat{b}_n = (\sin \theta_n \cos \phi_n, \sin \theta_n \sin \phi_n, \cos \theta_n)$. We align the spin basis on each site with \hat{b}_n,

$$U_n = \left(\begin{array}{cc} \cos(\theta_n/2) & -\sin(\theta_n/2)e^{-i\phi_n} \\ \sin(\theta_n/2)e^{i\phi_n} & \cos(\theta_n/2) \end{array} \right).$$

The Hamiltonian (2.1) transforms to

$$H = \sum_{n,a,b} (t_n \delta_{ab} \tilde{f}_{n+1}^\dagger \tilde{f}_{n+1} + \text{H.c}) + \sum_{n,a} B_0 \delta_{\sigma \sigma'} \tilde{f}_{na}^\dagger \tilde{f}_{na} + \text{H.c.}$$

The unitary matrix $U_{\sigma_n} = U_{n+1}^\dagger U_{n+1}$ has elements

$$\Omega_{n\sigma} = \left(\begin{array}{cc} \alpha_n & -\beta_n^* \\ \beta_n & \alpha_n^* \end{array} \right),$$

$$\alpha_n = \cos \frac{\theta_n}{2} \cos \frac{\theta_{n+1}}{2} + \sin \frac{\theta_n}{2} \sin \frac{\theta_{n+1}}{2} e^{-i\phi_n - \phi_{n+1}},$$

$$\beta_n = -\sin \frac{\theta_n}{2} \cos \frac{\theta_{n+1}}{2} e^{i\phi_n} + \cos \frac{\theta_n}{2} \sin \frac{\theta_{n+1}}{2} e^{i\phi_{n+1}}.$$
has only virtual spin-flip transitions, without any matrix elements between the spin bands. We obtain \(H_{\text{eff}} \) from \(H \) by a canonical transformation \(H \to e^{-iS} H e^{iS} \) followed by a projection onto the spin-down band. The Hermitian operator \(S \) is expanded as \(S = S_1 + S_2 + \cdots \), with \(S_n \) of order \(\Delta_0^{2n} B_0^{n-1} / \mu^{n-1} \) and \(p + q = r + s = n \). The term \(S_n \) is chosen such that it eliminates the \(n \)th order matrix elements between the spin bands.

To first order one has

\[
H \to H + [H, i S_1],
\]

(A5)

\[S_1 = i \sum_n \left[\frac{\Delta_0}{2\mu} \rho_{\uparrow} \alpha_n \beta_n (\tilde{f}_{n+1 \uparrow} \tilde{f}_{n \downarrow} - \tilde{f}_{n \uparrow} \tilde{f}_{n+1 \downarrow}) + \frac{\Delta_0}{2\mu} \rho_{\uparrow} \beta_n \rho_{\downarrow} \beta_n \right]. \]

(A6)

The resulting effective single-band Hamiltonian is

\[
H_{\text{eff}} = -\sum_n \left(B_0 + \mu + \frac{\beta_n t_{n+1}^2 + \beta_n t_{n-1}^2}{2B_0} \right) \psi_n^\dagger \psi_n
+ \sum_n \left[t_n \rho_{\uparrow} \psi_n \psi_{n+1}^\dagger + \frac{t_{n+1}^2 \rho_{\uparrow} \beta_n \psi_n \psi_{n+2}^\dagger}{2B_0}
+ \frac{1}{2B_0} \Delta_0 \rho_n \beta_n \psi_{n+1} \psi_n + \text{H.c.}. \right].
\]

(A7)

where we have abbreviated \(\psi_n = \tilde{f}_{n \uparrow} \). This is the \(p \)-wave chain model of Kitaev,4 with the addition of a next-nearest-neighbor hopping term. The pair potential \(\infty \Delta_0 \rho_n \beta_n \) vanishes if the magnetic moments are aligned, because then \(\beta_n = 0 \).

APPENDIX B: PHASE BOUNDARY IN SELF-CONSISTENT BORN APPROXIMATION

We calculate the phase boundary of the topologically nontrivial phase using the self-consistent Born approximation (SCBA), starting from the Hamiltonian (A3) in the locally rotated spin basis. For simplicity we take site-independent hopping energies \(t_0 \) and random, uncorrelated magnetic moments.

On each site \(n \) we define four real random variables,

\[
\varphi_1(n), \varphi_2(n), \varphi_3(n), \varphi_4(n) = \text{Re} \alpha_n, -\frac{4}{\sqrt{3}} \text{Im} \alpha_n, \text{Re} \beta_n, \text{Im} \beta_n,
\]

(B1)

to dimensionless momenta \(k \in (-\pi, \pi) \). Substitution of Eq. (A3) gives

\[
H = \sum_k \Psi_k^\dagger H_0(k) \Psi_k + \sum_{j=1}^4 \sum_{k,q} \varphi_j(k-q) \psi_j^\dagger(k,q) \psi_q.
\]

(B4)

\[
H_0(k) = \left(\frac{8}{9} t_0 \cos k - \mu \right) \sigma_0 \tau_z + B_0 \sigma_z \tau_0 + \Delta_0 \sigma_0 \tau_x.
\]

(B5)

We have abbreviated

\[
\sum_k \equiv \frac{N}{2\pi} \int_{-\pi}^\pi dk.
\]

(B6)

The interaction vertices are given by

\[
v_j(k,q) = \frac{1}{2t_0} (a_j e^{i \theta} + a_j^* e^{-i \theta}),
\]

(B7)

\[
a_1 = \sigma_0 \tau_z, \quad a_2 = i \sigma_z \tau_x, \quad a_3 = -i \sigma_y \tau_x, \quad a_4 = \sigma_y \tau_0.
\]

(B8)

They satisfy \(v_j^\dagger(k,q) = v_j(q,k) \) and the particle-hole symmetry condition

\[
\sigma_\gamma \tau_x v_j(k,q) \sigma_\gamma \tau_x = -v_j^*(-k, -q).
\]

(B9)

The self-energy \(\Sigma(k) \) at the Fermi level is given in SCBA by the integral equation

\[
\Sigma(k) = -\sum_{j=1}^4 \int_{-\pi}^\pi \frac{dq}{2\pi m_j} v_j(k,q) [H_0(q) + \Sigma(q)]^{-1} v_j^\dagger(q,k).
\]

(B10)

The effective Hamiltonian

\[
H_{\text{SCBA}}(k) = H_0(k) + \Sigma(k)
\]

(B11)

satisfies the particle-hole symmetry relation

\[
\sigma_\gamma \tau_x H_{\text{SCBA}}(k) \sigma_\gamma \tau_x = -H_{\text{SCBA}}^*(k).
\]

(B12)

In contrast to the SCBA calculations in Refs. 27 and 35, where the interaction vertices are momentum independent, the randomness of the magnetic moments induces momentum-dependent vertices in Eq. (B4). As a consequence the self-energy \(\Sigma(k) \) becomes momentum dependent.

We calculate the topological quantum number \(Q \) from \(H_{\text{SCBA}} \) by means of Kitaev’s Pfaffian formula,

\[
Q = \text{sign} \left\{ \text{Pf} \left[\sigma_\gamma \tau_x H_{\text{SCBA}}(0) \right] \right\} \text{Pf} \left[\sigma_\gamma \tau_x H_{\text{SCBA}}(\pi) \right].
\]

(B13)

The particle-hole symmetry relation (B12) ensures that the Pfaffian is calculated of an antisymmetric matrix. In the large-\(N \) limit this Hamiltonian expression for the topological quantum number is equivalent to the scattering matrix expression (3.9).22
The 4×4 self-energy matrix can be decomposed in terms of 16 combinations of Pauli matrices $\sigma_\alpha \tau_\beta$,

$$\Sigma(k) = \Sigma_1(k)\sigma_\alpha \tau_\beta + \Sigma_2(k)\sigma_\gamma \tau_0 + \Sigma_3(k)\sigma_\delta \tau_1 + \cdots.$$ \hspace{1cm} (B14)

At $k = 0, \pi$ only the terms shown are nonzero. These three terms appear in $H_{\text{scba}}(k)$ as a renormalization of the energy scales

$$\tilde{\mu}(k) = \mu - \Sigma_1(k), \quad \tilde{B}(k) = B_0 + \Sigma_2(k), \quad \tilde{\Delta}(k) = \Delta_0 + \Sigma_3(k).$$ \hspace{1cm} (B15)

Substitution into Eq. (B13) gives the topological quantum number

$$Q = \text{sgn}\{[\tilde{B}(0)^2 - \tilde{\varepsilon}(0)^2 - \tilde{\Delta}(0)^2]$$

$$\times [\tilde{B}(\pi)^2 - \tilde{\varepsilon}(\pi)^2 - \tilde{\Delta}(\pi)^2]\}.$$ \hspace{1cm} (B16)

The phase boundary where Q changes sign is indicated in Fig. 3 (top panel). This calculation contains no adjustable parameters.