Authenticated Join Processing in Outsourced Databases

Yin Yang1, Dimitris Papadias1, Stavros Papadopoulos1, Panos Kalnis2

1 Department of Computer Science and Engineering
Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
{yini, dimitris, stavros}@cse.ust.hk

2 Division of Math. and Computer Sciences and Engineering
King Abdullah University of Science and Technology
Saudi Arabia
panos.kalnis@kaust.edu.sa

ABSTRACT
Database outsourcing requires that a query server constructs a proof of result correctness, which can be verified by the client using the data owner’s signature. Previous authentication techniques deal with range queries on a single relation using an authenticated data structure (ADS). On the other hand, authenticated join processing is inherently more complex than ranges since only the base relations (but not their combination) are signed by the owner. In this paper, we present three novel join algorithms depending on the ADS availability: (i) Authenticated Indexed Sort Merge Join (AISM), which utilizes a single ADS on the join attribute, (ii) Authenticated Index Merge Join (AIM) that requires an ADS (on the join attribute) for both relations, and (iii) Authenticated Sort Merge Join (ASM), which does not rely on any ADS. We experimentally demonstrate that the proposed methods outperform two benchmark algorithms, often by several orders of magnitude, on all performance metrics, and effectively minimize (i) the proof of result correctness, which can be verified by the client using the data owner’s signature. Previous authentication techniques deal with range queries on a single relation using an authenticated data structure (ADS). On the other hand, authenticated join processing is inherently more complex than ranges since only the base relations (but not their combination) are signed by the owner. In this paper, we present three novel join algorithms depending on the ADS availability: (i) Authenticated Indexed Sort Merge Join (AISM), which utilizes a single ADS on the join attribute, (ii) Authenticated Index Merge Join (AIM) that requires an ADS (on the join attribute) for both relations, and (iii) Authenticated Sort Merge Join (ASM), which does not rely on any ADS. We experimentally demonstrate that the proposed methods outperform two benchmark algorithms, often by several orders of magnitude, on all performance metrics, and effectively shift the workload to the outsourcing service. Finally, we extend our techniques to complex queries that combine multi-way joins with selections and projections.

Categories and Subject Descriptors
H.2 DATABASE MANAGEMENT, H.2.0 General - Security, integrity, and protection, H.2.4 Systems - Query processing

General Terms

Keywords
Database Outsourcing, Join Algorithms, Query Authentication.

1. INTRODUCTION
Database outsourcing [8] is applicable in numerous domains and settings including edge computing [20], peer-to-peer networks [10], database caching [14], etc. In this setting, a data owner outsources database functionality to a third-party database service provider (DSP) that maintains the data in a DBMS, and answers queries to clients. Authenticated query processing enables the DSP to prove the correctness of the results. Existing methods are based on the secret/public key framework. Specifically, the DSP indexes the signed data using an authenticated data structure (ADS). During query processing, it traverses the ADS and returns a verification object (VO) that includes the actual result and additional verification information. The VO is transmitted to the client, which can establish soundness and completeness using the public key of the owner. Soundness means that every record in the result set is present in the owner’s database and not altered. Completeness means that all valid results are included.

In our examples, we use the database and queries of Figure 1. Given \(Q_0 = \sigma_{\text{quantity}>100}\text{Purchase} \), the correct result set is \(RS = \{<\text{p}_5, \text{c}_1, \text{200}>, <\text{p}_3, \text{c}_2, \text{500}>, <\text{p}_6, \text{c}_2, \text{600}>\} \). \(RS_1 = \{<\text{p}_3, \text{c}_1, \text{200}>, <\text{p}_5, \text{c}_2, \text{500}>, <\text{p}_6, \text{c}_2, \text{600}>\} \) and \(RS_2 = \{<\text{p}_3, \text{c}_1, \text{200}>, <\text{p}_5, \text{c}_2, \text{500}>, <\text{p}_6, \text{c}_2, \text{600}>\} \) are not sound because they either contain fake \((p_5 \in RS_1) \), or altered \((p_5 \in RS_2) \) records. \(RS_3 = \{<\text{p}_3, \text{c}_1, \text{200}>, <\text{p}_5, \text{c}_2, \text{500}>, <\text{p}_6, \text{c}_2, \text{600}>\} \) is not complete because \(p_5 \) is missing. Besides achieving soundness and completeness, authenticated query processing methods should minimize (i) the VO size, which dominates the communication overhead between the client and the DSP, (ii) the verification cost at the client, and (iii) the query processing time at the DSP. In most applications, (i) and (ii) are more important goals than (iii), since the client usually has less computational power and bandwidth compared to the DSP.

<table>
<thead>
<tr>
<th>Purchase</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>pid</td>
<td>cid</td>
</tr>
<tr>
<td>p1</td>
<td>c1</td>
</tr>
<tr>
<td>p2</td>
<td>c2</td>
</tr>
<tr>
<td>p3</td>
<td>c2</td>
</tr>
<tr>
<td>p4</td>
<td>c1</td>
</tr>
<tr>
<td>p5</td>
<td>c2</td>
</tr>
</tbody>
</table>

\(Q_0 = \sigma_{\text{quantity}>100}\text{Purchase} \)
\(Q_1 = \text{Purchase} \bowtie \text{Customer} \)
\(Q_2 = (\sigma_{\text{quantity}>100}\text{Purchase}) \bowtie \text{Customer} \)
\(Q_3 = (\sigma_{\text{quantity}>100}\text{Purchase}) \bowtie \text{Customer} \)

Figure 1 Running Example

Existing solutions focus on single-relation ranges. On the other hand, authenticated join processing is inherently more complex than ranges because only the base relations, and not their combinations, are signed by the owner. As it will become clear later, the client must always perform some computations to verify, as well as, generate part of the result locally. Previous work on this intricate problem is scarce and has severe shortcomings, defeating the goal of data outsourcing. Motivated by this, we
propose three novel authenticated join algorithms depending on the ADS availability: (i) Authenticated Indexed Sort Merge Join (AISM), which utilizes a single ADS in one of the base relations, (ii) Authenticated Index Merge Join (AIM) that requires an ADS for both relations, and (iii) Authenticated Sort Merge Join (ASM), which does not rely on any ADS. Going one step further, we describe the adaptation of our methods to authentication of complex queries involving joins over multiple tables, possibly combined with selections and projections. In particular, we show that for such queries, the best execution plan may involve not only AIM, but also AISM and ASM, in the presence of all required ADSs.

The rest of the paper is organized as follows. Section 2 surveys related work on authenticated query processing. Sections 3, 4 and 5 describe AISM, AIM and ASM, respectively. Section 6 extends these methods to complex query authentication. Section 7 contains an extensive experimental evaluation, and Section 8 concludes the paper.

2. RELATED WORK

Section 2.1 overviews authentication techniques for range queries. Section 2.2 discusses authenticated join processing. Before we proceed, we provide some basic cryptographic background. A one-way, collision-resistant hash function H takes as input a message m of arbitrary length and produces a digest of fixed length. H has two properties: (i) computing m from $H(m)$ is intractable, and (ii) the probability of two different messages to have the same digest is very low. A public key digital signature scheme involves the generation of a secret (sk) and a public (pk) key: sk is known only to the signer, whereas pk is published. To produce signature s of a message m, the signer applies sk to the digest of m. Given s, m, and pk, the verifier can certify that m has not been falsified (integrity) and that m indeed originates from the party that signs it (authenticity). Note that since H is not commutative, a signature s on a set of records S can only certify a fixed order of S called the verifiable order. For instance, assume that a message m contains the concatenation $s_1|s_2|s_3$ of three records. A signature $s(m)$ cannot be used to certify $s_2|s_3|s_1$, or any order other than $s_1|s_2|s_3$.

2.1 Authenticated range query processing

Authenticated range query processing was first studied in computer security community. [6] proposes a method that sorts the records on the query attribute and indexes them by a Merkle Hash Tree (MHT) [17]. The MHT is a binary tree that provides the foundation for a broad class of ADSs, e.g., [6], [15], [12]. Every leaf node contains the digest of a record. The tree is constructed bottom-up; each internal node stores a hash value computed on the concatenation of the children digests. The data owner signs the root using the secret key. Given a range query, the DSP first expands it to include two boundary records, and processes it using the MHT. The client can verify soundness by exploiting the collision-resistance property of the hash function. Furthermore, the boundary records ensure completeness, i.e., that no result is missing at the query endpoints. [15] extends the concepts of the MHT to Directed Acyclic Graphs, including dictionaries, tries, and range search trees. Dynamic versions of the MHT for outsourced data streams are discussed in [13], [21].

The first disk-based ADS for range query processing [20] guarantees soundness, but not completeness. A subsequent signature chaining approach [19] ensures both soundness and completeness. Currently, the state-of-the-art ADS is the Merkle B-tree (MB-tree) [12], which combines the MHT with the B+-tree, i.e., it can be thought of as a MHT where the node fanout is determined by the block size. Figure 2 illustrates query processing using the MB-tree. Given a range query, the DSP traverses the MB-tree top-down until it finds the first record (let s_i) in the range. During the traversal, the following items are inserted into the verification object VO: (i) the digests of the left siblings of N_i in the root, (ii) the digests of the left siblings of N_i in N_i, (iii) the (boundary) record s_{i-1} preceding s_i, and (iv) the digests of the left siblings of s_{i-1} in N_i. Next, the DSP retrieves the query result s_i, s_{i+1}, ..., s_j by following the pointers between leaf nodes. The (boundary) record s_{i-1} is added to the VO. Finally, a second traversal from the root to s_{i+1} inserts all the digests on the right of the path. In Figure 2, the digests contained in the VO are shaded. Given s_{i-1}, s_{i}, ..., s_{j} and the digests, the client can re-compute the digest of the root and verify it against the owner’s signature. The EMB-tree [12] reduces the VO size by embedding a binary MHT inside each internal node of the MB-tree. The MR-tree [25] applies the concept of the MHT to R-trees for authentication of multi-dimensional ranges on outsourced spatial data.

Atallah et al. [3] introduce a theoretical approach with improved asymptotic bounds for the VO size. To eliminate the threat of revealing sensitive information to unauthorized clients, [11] proposes an alternative scheme that avoids boundary records and hash values in the VO. Several papers investigate outsourcing in applications with semi-trusted DSP (e.g., [23], [7]) or clients (e.g., [24]), in which case authentication can be accomplished without an ADS. Specifically, [23] considers that the DSP’s only motivation to cheat is to save resources, and proposes a solution in which the DSP proves that it has performed the necessary computations to correctly answer the queries. [7] presents MHT-based algorithms for verifying the correctness of storage operations assuming that the database software at the DSP is trusted, but not its physical storage. In [24], the owner introduces fake tuples to the outsourced database, which are known to the clients but not the DSP. A client can thus establish soundness and confidentiality by analyzing the fake records in the result. These solutions are not applicable to our model since we do not rely on any degree of trust for the DSP or the clients. Finally, several papers ([8],[5],[1]) investigate privacy preservation of outsourced data. GhostDB [2] answers queries with both an untrusted server and a secure chip embedded in a USB key. These issues are orthogonal to join authentication and the proposed methods.

2.2 Authenticated join processing

[20] proposes the pre-computation and storage of all possible join
results in materialized views. Each view is treated as a
conventional table, meaning that an ADS can be built on it to
support more complex queries. For example, the result of $Q_1 =$
Purchase-λ_{cid} Customer can be materialized in a view V_1. If an
ADS is maintained on V_1, quantity, the DSP can answer $Q_2 =$
$(\sigma_{\text{quantity}>100}.\text{Purchase}) \land \text{Customer}$ by transforming it to
$\sigma_{\text{quantity}>100}.V_1$. This approach imposes a significant overhead for
the owner to construct and update a large number of materialized
views. Moreover, in most practical applications it is infeasible to
determine all possible joins in advance. The only existing
algorithm for on-line join processing is discussed in [19] and [12]
as an extension of range authentication. We refer to this algorithm as
Authenticated Index Nested Loop (AINL) since it is based on
the index nested loop paradigm, and discuss it in detail below.

Let R and S be the two relations to be joined on a common
attribute a, and consider that there is an ADS T_S (i.e., MB-tree) on
$S.a$. R constitutes the outer and S the inner relation. Figure 3
illustrates the pseudo-code of AINL assuming a join $R \bowtie_{a=r} S$. Initially,
the signature of R, the cardinality $|R|$ of R and the
signature of T_S are inserted into the VO. Then, for each record
$r \in R$ in the verifiable order, the DSP appends r to the VO and
retrieves the matching records in S, by processing a range query
using T_S (we use the term range to also denote equality
conditions). As discussed in Section 2.1 (see Figure 2), the output
of this query includes (i) the join matches of r, (ii) boundary
records, and (iii) digests obtained during T_S traversal. These
values are inserted into the VO, together with a separator “;”
that signifies the end of each range query (hereafter, denoted as a
round). The processing terminates when all records of R are
exhausted, and the DSP transmits the VO to the client.

\begin{figure}[h]
\centering
\begin{algorithmic}
\STATE $\text{AINL(Relation} R, \text{MBTree} T_S, \text{VO})$ \hspace{1cm} // DSP
\STATE // The join query is $R \bowtie_{a=r} S$
\STATE 1. Append to VO the signature of R, $|R|$, the root signature of T_S
\STATE 2. For each $r \in R$ \hspace{1cm} // in the verifiable order
\STATE \hspace{1cm} Append r to VO
\STATE 3. Call $\text{RangeSearch}(T_S, r.a, \text{VO})$ \hspace{1cm} // process range query on T_S
\STATE 4. Append a separator “;” to VO
\end{algorithmic}
\caption{Figure 3 Algorithm AINL}
\end{figure}

The client can reconstruct and authenticate the join result using
the algorithm of Figure 4. Specifically, it can establish the
correctness of R based on the owner’s signature. Furthermore,
for each record $r \in R$, it can verify $\text{RangeSearch}(T_S, r.a, \text{VO})$ using
the mechanisms of the MB-tree. Note that since the VO of the
range query contains some additional (boundary) records, the
actual matching tuples of r are extracted in line 6.

\begin{figure}[h]
\centering
\begin{algorithmic}
\STATE $\text{Verify}_\text{AINL}(\text{VO})$ \hspace{1cm} // Client
\STATE 1. Read the signature of R, $|R|$, the root signature of T_S from \text{VO}
\STATE 2. For $i = 1$ To $|R|$
\STATE \hspace{1cm} Read tuple r from VO
\STATE 4. Read until reaching the separator “;”
\STATE 5. Verify that the data read in line 4 are the VO for $\text{RangeSearch}(T_S, r.a, \text{VO})$
\STATE 6. Extract each matching pair of tuples s of r read in line 4, generate a join result combining r and s
\STATE 7. Verify the signature of R
\end{algorithmic}
\caption{Figure 4 Algorithm Verify_AINL}
\end{figure}

For instance, consider $Q_1 = \text{Purchase}_1 \land \text{Customer}$ in Figure 1,
with Purchase as the outer relation. Initially, the VO contains
the signature of Purchase, its cardinality (s) and the signature of
Customer. Let the verifiable order of Purchase be $(p_1, p_2, p_3, p_4, p_5)$. The DSP performs a range query on
Customer to find the matching customer c_i of p_i. Consequently it adds to the VO: p_i, c_i, c_i (boundary record for c_i) and the digests of Customer needed
to verify the correctness of the range. The separator “;” denotes
the end of the first round. Similarly, the second round appends to
the VO: p_2, c_i, boundary records c_i and c_a, and the necessary
digests. In total, there are 5 rounds, each of which corresponds to
a tuple in Purchase. The VO contains 5 Purchase tuples and 13
records from Customer.

Let $|R|$, $|S|$, $|RS|$ be the cardinality of R, S and the join result,
respectively. $R \bowtie_{a=r} S$ necessitates the transmission of $|R|
records of R and $2|R|+|RS|$ tuples of S (the matching tuples plus 2
boundaries records per R tuple), in addition to a large number of
digests. Furthermore, AINL incurs high computational overhead
for both the DSP (to process 5 range queries in the example) and
the client (to verify them). This motivates the naive alternative
(referred to as NAI) of executing the join exclusively at the client
side. Specifically, according to NAI, the DSP simply transmits the
base relations along with their signatures to the client, which
verifies them and performs the join locally. The VO size $(|R|+|S|
tuples of NAI is usually much lower than that of AINL, except
for the case where $|R| << |S|$ and the join is highly selective.
Furthermore, unless $|R|$ is very small, the verification of $|R|$ range
queries in AINL burdens the client more than joining the two
tables directly. Although it is often better than AINL, NAI is far
from an ideal solution. First, the query is processed entirely by
the client, which contradicts the purpose of data outsourcing.
Second, the DSP transmits all records of the base relations, while
the client only needs those with matching partners. Finally, NAI
cannot take advantage of the existence of ADS on the data, or
selection conditions on the query. Next, we propose algorithms
that overcome these shortcomings of AINL and NAI. For ease of
presentation, we first focus on binary equi-joins, and defer the
discussion on other join conditions and complex queries for later
sections.

3. AISM

Similar to AINL, our first algorithm AISM (for Authenticated
Indexed Sort-Merge join) utilizes an ADS for the inner relation.
We demonstrate the basic idea of AISM using $Q_2 = \text{Purchase}_1 \land \text{Customer}$, and assuming that the DSP maintains an MB-tree
Customer on $\text{Customer}.cid$. In a pre-processing step, the DSP sorts
the outer table Purchase on the join attribute cid, and generates
the rank list Ω_Purchase. The purpose of the rank list is to inform the
client on how to restore the verifiable order of the records
(required for signature verification). For instance, assuming the
verifiable order p_1, p_2, p_3, p_4, p_5, we have $\Omega_\text{Purchase} = (1, 4, 3, 5, 2)$,
meaning that p_1 has the smallest value (c_i) on cid, p_2 has
the second smallest value, and so on. Note that unlike conventional
sort-merge join, in AISM the sole purpose of sorting the outer
relation is to generate the corresponding rank list. Thus, it suffices
to sort only the join attribute values, which can often be
performed in main memory. The DSP transmits all tuples of the
outer relation \((\text{Purchase})\) to the client in their verifiable order, along with the owner’s signature and \(\Omega_{\text{Purchase}}\). Next, the DSP turns to the inner relation \(\text{Customer}\). Observe from Figure 1 that all purchases involve clients \(c_1, c_2\) and \(c_3\). Therefore, it is possible to find all matching customers for these purchases by a single range \(Q = \sigma_{c_1 \leq c_2 \leq c_3}\text{Customer}\) on \(\text{Customer}\). Due to the nature of the MB-tree, the results of \(Q\) (i.e., customers with \(cid\ c_1, c_2\), and \(c_3\)) are sorted on \(cid\) and can be authenticated. Meanwhile, the rank list \(\Omega_{\text{Purchase}}\) explicitly specifies the order of purchases when sorted on \(cid\). Therefore, if the client obtains \(Purchase, \Omega_{\text{Purchase}}\) and the results of \(Q = \sigma_{c_1 \leq c_2 \leq c_3}\text{Customer}\), it can generate and authenticate the result of \(\text{Purchases}\-\text{Customer}\), by merging the output of \(Q\) with \(\Omega_{\text{Purchase}}\).

In general, given a query \(R\,\sigma_{a=s}\,S\) and an MB-tree \(T_S\) on \(S.a\), the DSP processes a single multi-range \(Q\) with one traversal of \(T_S\), and merges its \(VO\), denoted as \(VO(Q)\), with the rank list \(\Omega_R\). \(\Omega_R[i] = j\) signifies that the \(i\)-th element of \(\Omega_R\) corresponds to the \(j\)-th record in the verifiable order. For ease of presentation, we also use \(\Omega_R[i]\) to denote this record. We illustrate the processing of \(Q\) using the relations of Figure 5, where \(S|15\rangle = 15\) and \(R|6\rangle = 6\). The join result contains three pairs \((\Omega_R[1], s_1), (\Omega_R[2], s_1/1)\) and \((\Omega_R[3], s_1/1)\).

Initially, the DSP inserts into the \(VO\): (i) the signature of \(R\), (ii) the root signature of \(T_S\), and (iii) all records of \(R\) in the verifiable order (which can be arbitrary). Then, it sorts \(R\) according to the join attribute \(a\), breaking ties by the original (i.e., verifiable) order of \(R\), and generates the rank list \(\Omega_R\). For each \(\Omega_R[i]\), the DSP first inserts it in the \(VO\), and performs two operations on \(T_S\), which we call \emph{index-traversal} and \emph{leaf-scan}. Index-traversal traverses \(T_S\) to the leaf node that corresponds to the left boundary record of \(\Omega_R[i]\). In the example of Figure 5, the DSP first inserts \(\Omega_R[1]\) into the \(VO\), and descends \(T_S\) until node \(A\), whose second entry corresponds to \(s_2\), the left boundary of \(\Omega_R[1]\). The digests of all left siblings \((h_i)\) along the path (Root-\text{F-Arg}) are appended to the \(VO\).

The leaf-scan starts from a leaf entry and follows the successor pointers, until reaching the right boundary record. During this step, all encountered tuples are inserted into the \(VO\). Continuing the example, the DSP appends to the \(VO\) \(s_2, s_3, s_4\) (right boundary of \(\Omega_R[1]\)) and a separator \(;\) signifying the end of the first round. The DSP proceeds to the next round, and inserts \(\Omega_R[2]\) into the \(VO\). Index-traversal starts from the \emph{current position} (first entry of \(B\)), ascends the tree until the root, and then descends to node \(D\), which contains the left boundary \(s_{10}\) of \(\Omega_R[2]\). The digest \((h_s, h_b, h_c)\) of each skipped child is inserted into the \(VO\). Leaf-scan adds \(s_{10}\), the matching tuple \((h_s, h_{10})\) of \(\Omega_R[2]\), and \(s_{12}\) (i.e., right boundary) to the \(VO\).

At the beginning of the third round, the DSP appends \(\Omega_R[3]\) to the \(VO\), which has the same join attribute value as \(\Omega_R[2]\). Index-traversal discovers that the left boundary \(s_{10}\) is before the current position \(s_{12}\). An important principle of AISM is that the DSP never traverses the tree backwards, and index-traversal is skipped. Similarly, because the right boundary \(s_{12}\) has also been found, leaf-scan is also omitted, and the third round terminates. For the same reason, the fourth round simply appends \(\Omega_R[4]\) to the \(VO\).

At the fifth round, index-traversal reaches \(s_{13}\), appending \(h_{13}, h_{14}\) to the \(VO\). Since \(s_{13}\) is already the last record in \(S\), leaf-scan inserts \(s_{14}\), and the sixth round is skipped. Figure 6 illustrates AISM at the DSP side. We omit the pseudo-code for index-traversal and leaf-scan since their functionality is clear from the examples.

Figure 5 Example of AISM

Figure 6 Algorithm AISM

Figure 7 describes the verification process, which includes the actual result extraction from the \(VO\). Specifically, the client performs a single scan of the \(VO\) to (i) validate the signature of \(R\), (ii) establish the correctness of \(\Omega_R\), (iii) verify the rank list of \(\Omega_R\), and (v) generate join output. Operation (i) is trivial since \(R\) is received in the verifiable order (line 2). In operation (ii), the client checks that \(|\Omega_R| = |R|\), and for each pair of subsequent elements in \(\Omega_R\), \(\Omega_R[i].a \leq \Omega_R[i+1].a\). Moreover, if \(\Omega_R[i].a = \Omega_R[i+1].a\), the client checks that \(\Omega_R[i] < \Omega_R[i+1]\) (lines 5-7). For operation (iii), the client uses the records and digests of \(S\) to derive the digest \(h_{10}\) at the root of \(T_S\), bottom-up (line 11). In the above example, the \(VO\) contains \(h_1, h_5, h_9, h_c, h_{13}, h_{15}\). The client computes \(h_2, h_3, h_4, h_{10}, h_{11}, h_{12}, h_{15}\) by applying \(H\) on the corresponding records. Then, it obtains \(h_j\) (using \(h_{j-1}\), \(h_j\))(2)), and finally \(h_{10}\) (using \(h_{13}\)), which is matched against the signature of \(T_S\). Operation (iv) corresponds to range query verification; i.e., the client ensures, for each \(r \in R\), that the boundary records enclose the matching tuples and only matching tuples, which are extracted to generate join results (line 10).

2 When the tree is not full, the DSP must put additional boundary tokens in the \(VO\) to inform the client about the tree structure [12].
Verify_AISM (VO) // Client
1. Read the signature of R, |R|, the root signature of T_S, and all records of R from VO
2. Verify the signature of R
3. Initialize integer j=0 and record r so that r.a = –\infty
4. For i = 1 To |R|
5. Set j’ = j and r’ = r
6. Read integer j from VO, set r = R[j]
7. Check the condition (r.a > r’ a) \lor (r.a = r’ a \land j > j’)
8. Read from VO until reaching the separator “>”.
9. Verify that the previous step only reads S tuples and digests,
(ii) the S tuples either match R or are boundary records, and
(iii) no digest is enclosed by boundary records
10. Generate join results of r and its matching S records
11. Use the values read in line 8 to incrementally compute h_Root
12. Read digests from VO until it is empty, use them to incrementally compute h_Root
13. Verify h_Root against the root signature of T_S

Figure 7 Algorithm Verify_AISM

Proof of soundness: Let rs be an incorrect answer. Then, either (i) r does not match s, or (ii) r or s are bogus/alterred. The first case cannot happen because the client generates matching pairs by itself. For the second case, a fake r tuple is detected by the authentication information of R. An incorrect s tuple leads to the wrong h_Root failing the verification against the signature of T_S.

Proof of completeness: Let rs be a valid result of the query missed by the client. Then either (i) the client does not receive r or s, or (ii) the client does not identify r and s as a matching pair. For case (i), if r is missing, the verification against the authentication information of R fails. On the other hand, if s is absent from the VO, for the client to correctly construct h_Root, the VO must contain the digest h of s or of a node covering s. For instance, if s_j were omitted, then the VO of Figure 5 should include h_j. The client, however, will detect either that a digest is enclosed by two boundary records, or that a boundary record is missing (line 9 of Verify_AISM). For case (ii), note that the client has all relevant R (and S) tuples sorted on the join attribute a. Specifically, the order of R records is established by I_R (verified by the client), while the order of S records is given by ADS T_S and the no-go-back policy during the tree traversal. Since the client performs the merging by itself, it finds all matching pairs of R and S, eliminating the possibility of missing rs.

AISM avoids the repeated computations and redundant transmissions incurred by AINL. Specifically, the DSP visits a node in T_S at most once, rather than up to |R| times in the case of AINL. Meanwhile, using AISM, the client never repeats the computation of any hash value, and each element of T_S (e.g., digest or S tuple) is included in the VO at most once. Comparing AISM with NAI (described in Section 2.2), the former avoids the transmission of S records that do not have join partners. In addition, whereas the client performs the entire join processing in NAI, AISM shifts most of the workload to the DSP (e.g., sorting R, traversing T_S), leaving only inexpensive operations (e.g., rebuilding h_Root, merging the sorted relations) to the client. An interesting observation is that AISM is notably more efficient for the indexed relation (S) than the non-indexed one (R), suggesting that the performance can be improved by utilizing a second ADS on R. This motivates the next algorithm.

4. AIM

Authenticated Index Merge join (AIM) utilizes ADSs on the join attribute in both input relations. Figure 8 illustrates two MB-trees T_S on S.a and T_R on R.a for the datasets of Figure 5. Initially, the DSP inserts the root signatures of T_S and T_R into the VO. It then chooses one tree, say T_R, reaches its first leaf node (h1), finds the first record (r1), and inserts it into the VO. With r1.a as target, the DSP performs index-traversal and leaf-scan on T_S, to retrieve matching and boundary records. Index-traversal visits the path from RootS to the first boundary s1 of r1. The digest (h_s1) of the left sibling entry is appended to the VO. In the subsequent leaf-scan, s2, s3, and s4 are also added. Note that a match (i.e., s3) for r1 is found. Every time AIM identifies a result, it performs another leaf-scan on T_R. Continuing the example, the DSP appends a separator “>” to the VO, performs the leaf-scan on T_S, with target r1.a = s3.a, leading to the insertion of r2 (right boundary) to the VO. This additional operation retrieves all R tuples with identical join attribute as r1, and is vital to the correctness of AIM.

The second round starts at the current positions at T_S (s4) and T_R (r2). The DSP swaps the roles of T_S and T_R, and performs index-traversal and leaf-scan on T_R with s4.a as target value. Since both the left (i.e., r3) and right (r3) boundary records are already present in the VO, neither operation has any effect. There is no extra leaf-scan on the opposite relation (as in Round 1) because s4 has no matching partner. In the third round, the DSP switches back to T_S and performs index-traversal with target value r3.a, ascending to RootS and then descending to s10, the left boundary for r3. The digests of the skipped entries in nodes B and F, i.e., h_{s10}, h_{s11}, h_{s12}, are inserted into the VO. The subsequent leaf-scan

Figure 8 Example of AIM

<table>
<thead>
<tr>
<th>VO: root signature of T_S, root signature of T_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round 1</td>
</tr>
<tr>
<td>Round 2</td>
</tr>
<tr>
<td>Round 3</td>
</tr>
<tr>
<td>Round 4</td>
</tr>
<tr>
<td>Round 5</td>
</tr>
<tr>
<td>Round 6</td>
</tr>
</tbody>
</table>
appends s_{1j} and s_{1j}. Similarly to Round 1, a match (s_{1j}) of the target tuple (r_j) is identified. Consequently, another leaf-scan is performed on T_R (with target $s_{1j}, a = r_j.a$) adding r_j (match) and r_i (right boundary) to the VO. Note that if this operation were omitted, the hash value of r_i, rather than the full record, would be inserted to the VO during the next round; consequently, the client would miss the result (r_i, s_{1j}).

The fourth round searches T_R with target s_{1j}. A Index-traversal has no effect, since the VO already contains the left boundary r_i; leaf-scan finds no matches, and appends the right boundary r_i. In the fifth round, the DSP first performs index-traversal on T_S, with target value $r_S.a$, following path $s_{1j} \rightarrow D \rightarrow G \rightarrow E \rightarrow s_{1j}$ and appending $h_{s_{1j}}$, $h_{s_{1j}}$ (digests of skipped tuples) as well as s_{1j} (the left boundary record) to the VO. Because s_{1j} is the last tuple of T_S, leaf-scan is skipped. Finally (sixth round), since s_{1j}, a is still smaller than the target value $r_S.a$, the DSP simply traverses T_R back to $Root_{TS}$, adding the digest of r_i to the VO. This is implemented by an index-traversal with a target value of $+\infty$. Figure 9 illustrates AIM. The loop invariance of the algorithm is that, given a target record from one relation, its left and right boundaries (and possibly matching records) are determined in the opposite tree; the right boundary is used as a new target in the next round. Lines 11-13 correspond to the extra leaf-scan operation, performed whenever a matching pair is identified.

![Figure 9 Algorithm AIM](image)

The verification process is summarized in Figure 10. The client (i) verifies that the boundary records only enclose matching tuples, (ii) checks whether the additional leaf-scan operations are performed properly by the DSP, (iii) generates join results from the data records contained in the VO, and (iv) reconstructs h_{Root}^R, h_{Root}^S of T_S and T_R, and verifies them against their respective signatures. Operations (iii) and (iv) jointly ensure soundness, while the combination of (i), (ii), (iii) and (iv) guarantees completeness of the result. The proof is similar to that of AIM, except that in AIM the client must also verify condition (ii). Specifically, if the DSP cheats by not executing this operation, or doing it improperly (e.g., inserting a falsified tuple, or a hash value rather than the actual record), then either the check at line 9 fails, or the reconstructed root hashes do not match their corresponding signatures, alarming the client.

```
Verify_AIM (VO) // DSP
1. Read the root signatures of $T_S$ and $T_R$ from VO
2. Read tuple $r$ from VO
3. While VO is not empty
4. Read from VO until reaching separator “;”
5. Verify that in the previous step (i) only $S$ tuples and digests are read, (ii) the $S$ tuples either match $R$ or are boundary records and (iii) no digest is enclosed by boundary records
6. Use the values read in line 4 to incrementally compute $h_{Root}^R$
7. If matching records of $r$ are identified during line 4
8. Read from VO until reaching separator “;”
9. Verify that in the previous step (i) only $R$ tuples are read, (ii) these $R$ tuples only include those with identical join attribute values as $r$, and one right boundary record
10. Use the values read in line 8 to incrementally compute $h_{Root}^S$
11. Generate join results with $r$, $S$ tuples read in line 4, and $R$ tuples read in line 8
12. Set $s$ to the right boundary record of $r$
13. Repeat lines 4-12, reversing $R$ and $S$ (also $r$ and $s$
14. Verify $h_{Root}^R$ and $h_{Root}^S$ against their respective signatures
```

Figure 10 Algorithm Verify_AIM

AIM improves the performance of AISM. For relation S, the two algorithms perform similar operations at the DSP as well as the client, and place the same amount of data in the VO. However, for relation R, AISM requires the DSP to sort all tuples, and the client to verify and re-order them, whereas AIM only incurs one traversal of T_R for the DSP, and one h_{Root}^S computation for the client. Regarding the VO size, AISM inserts all R records, while AIM only adds those with join partners, and boundary records/digests for the remaining ones.

5. ASM

If there are no ADSs on the join attribute, the DSP has to return at least the join inputs to the client, so that the latter can establish their correctness. Furthermore, the client has to generate the join output itself, as there is no way to authenticate a join result received by the DSP. However, instead of the client executing the entire join locally as in NAI, the proposed ASM (for Authenticated Sort-Merge join) alleviates the burden of the client as follows: (i) the DSP performs a sort-merge join, and (ii) generates a VO such that the client can efficiently reconstruct the join output. Specifically, the transmitted VO includes $VO(R), B_S, VO(S), B_S, and \Omega_{BS}, B_S$ and B_R are two bitmaps, and Ω_{BS} is a list of integers. The meaning of $B_S, B_R and \Omega_{BS}$ will be explained soon. For our examples we use $Q_S = \text{Purchase} v \rightarrow \Omega_{Customer}$ in the database of Figure 1, assuming that the verifiable orders are (p_1, p_2, p_3, p_4, p_5) and (c_1, c_2, c_3, c_4, c_5) for $Purchase$ and $Customer$, respectively.

Figure 11 illustrates ASM at the DSP side. Initially (lines 1-4), the DSP sorts R and S on the join attribute a, and inserts the result in R' and S'. The use of temporary tables is necessary as the original (i.e., verifiable) order is needed when R is included in the VO. Then, it generates the rank lists Ω_R and Ω_S. Line 5 corresponds to the merge phase. This process marks every tuple that has matching records in the other relation, and generates Ω_{BS}. Ω_{BS} combines Ω_R and Ω_S in a single sorted list on a. In order to distinguish the two relations, we negate each element of Ω_R, Ω_S. For two records ($r \in R, s \in S), r.a = s.a$, then the element of r in Ω_{BS} precedes that of s. Continuing the example, given $\Omega_{Purchase} = (1, 4, 3, 5, 2)$ and $\Omega_{Customer} = (1, 2, 3, 4, 5), \Omega_{Par-Cus} = (1, 4, -1, 3, 5, -2, -2, -3, -4, -5)."
ASM (Relation R, Relation S, VO)

1. Create a temporary table \(R' \) with a single column \(a \)
2. For each record \(r \in R \), append \(r.a \) to \(R' \)
3. Repeat lines 1-2 for \(S \), creating a temporary table \(S' \)
4. Sort \(R' \) and \(S' \), and generate rank lists \(\Omega_R \) and \(\Omega_S \)
5. Merge the sorted \(R' \) and \(S' \), mark tuples with join partners, and generate a combined rank list \(\Omega_{RS} \)
6. Create a bitmap \(B_R \) of size \(|R| \)
7. \(\forall 1 \leq i \leq |R| \), set \(B_R[i] = 1 \) if \(R[i] \) has a join partner, and 0 otherwise
8. Append the signature of \(R \) and \(|R| \) to \(VO \)
9. For \(i = 1 \) To \(|R| \), Append \(R[i] \) and \(B_R[i] \) to \(VO \)
10. Repeat lines 6-9 for \(S \)
11. Append \(\Omega_{RS} \) to \(VO \)

Figure 11 Algorithm ASM

Next, the DSP generates the bitmap \(B_R \) of \(R \). Recall that the merging phase marks each tuple that can be joined. Let \(j = \Omega_R[i] \) be the rank of a record \(r \in R \) in the verifiable order. If \(r \) is marked, \(B_R[j] \) is set to 1; otherwise (\(r \) has no join partners in \(S \)), \(B_R[j] \) is set to 0. In the running example: \(B_{Purchase} = (1, 1, 1, 1, 1) \) and \(B_{Customer} = (1, 1, 1, 0, 0) \), since customers \(c_4 \) and \(c_5 \) do not appear in \(Purchase \). \(B_R \) is inserted into the \(VO \), together with \(VO(R) \). Specifically, \(VO(R) \) includes the records of \(R \) in the verifiable order, the cardinality of \(R \) and the owner’s signature. The bitmap \(B_R \) is generated in the same way and appended to the \(VO \), together with \(VO(S) \). Finally, the DSP adds \(\Omega_{RS} \) and the entire \(VO \) is transmitted to the client.

Upon obtaining the \(VO \), the client computes and verifies the result by applying the algorithm of Figure 12. When a tuple \(r \in R \) is received, the client uses it to incrementally compute the verification information (e.g., digest) required for matching the signature. Then, it checks the bitmap value of \(r \). If it is 1 (i.e., \(r \) has join partners in \(S \)), the entire tuple is stored on the disk. Otherwise, only the join attribute is kept. These bitmaps are verified later in the subsequent merging step. The same process is repeated for \(S \). In our example, the \(name \) and \(city \) of \(c_4 \) and \(c_5 \) are deleted, as these customers will not appear in the join result. At this point the client can verify the individual relations. Next, it remains to compute their join result. This is achieved by a merge operation (lines 7-18) based on \(\Omega_{RS} \) which constitutes the last part of the \(VO \). Specifically, matching records from the two relations appear sequentially in \(\Omega_{RS} \), hence, merging reduces to a scan of \(\Omega_{RS} \) and retrieval of the corresponding tuples from the stored files. When multiple records have identical join attributes, they are temporarily stored in a buffer buf (line 13), and later examined to produce join results (lines 15-18). Meanwhile, the client verifies the correctness of the bitmaps, i.e., records marked “0” and stored partially must not participate in any join results (line 16). Note that the usage of the bitmap reduces the I/O operations because, for tuples without join partners, only the join attribute is written to, and then read from the disk. This optimization also applies to AISM for handling the non-indexed relation.

Proof of soundness: Suppose that the DSP deceives the client into generating a wrong result \(rs \). Then either (i) \(r \) does not match \(s \), or (ii) \(r \) or \(s \) are bogus/ altered. The first case is impossible as the client generates matching pairs locally. Case (ii) is detected by the authenticated information of \(R \) and \(S \).

Proof of completeness: Let \(rs \) be a valid result of the query. The DSP must transmit the unaltered \(r \) (resp., \(s \)) to the client, otherwise the checking against the authenticated information of \(R \) (resp., \(S \)) will fail. Therefore the only possibility for the client to miss \(rs \) is that the DSP provides the wrong rank list \(\Omega_{RS} \), which is detected in the same way as in AISM. Furthermore, if the DSP cheats in the marking step (i.e., sets the bitmap to 0, although the tuple can be joined), the client will detect it during the joining step, since it keeps the join-attribute values for all records.

Verify_ASM (VO)

1. Read the signature for \(R \) and \(|R| \)
2. For \(i = 1 \) To \(|R| \)
3. Read next record \(r \in R \) and a bit \(mark \) from \(VO \)
4. Use \(r \) to incrementally verify against the signature of \(R \)
5. If \(mark \) is 0, store only \(r.a \), otherwise store the entire \(r \)
6. Repeat lines 1-5 for \(S \)
7. Read an integer \(j \) from \(VO \), set \(r=R[j] \) if \(j=0 \), and \(r=S[j] \) otherwise
8. Initialize buffer buf with only one record \(r \)
9. While \(VO \) is not empty
10. Set \(j=j+1 \) and \(i=i \)
11. Read \(j \) from \(VO \), and set \(i \) in the same way as in line 7
12. Verify that \(t.a \leq a \)
13. If \(t.a = a \), verify that \(t.j < j \) and insert \(t \) into buf
14. Else \(\forall t.a < a \)
15. If \(buf \) contains records from both \(R \) and \(S \)
16. Verify that all tuples in \(buf \) are stored as full tuples
17. Join tuples in \(buf \) to generate results
18. Remove all records from \(buf \), and insert \(t \) into \(buf \)

Figure 12 Algorithm Verify_ASM

Compared with AISM and AIM, ASM is naturally less efficient as it does not utilize any ADS. This loss of efficiency is compensated by its flexibility, which, as we clarify in the next section, is an important property for authenticating complex queries. Furthermore, ASM significantly outperforms AINL on all aspects, and exhibits clear performance advantages over NAi in terms of the workload of the client.

So far we have focused on equi-joins. Since all proposed algorithms are based on the sort-merge join paradigm, they can be easily applied to band joins, whose join predicates are of the form \(R.a \leq S.a \leq b \). Note that an equi-join is a special case of the band join where \(b = 0 \). For AISM and AIM the main change is that the target of index-traversal for \(\Omega_R[i] \) is the first record \(s \) such that \(\Omega_R[i] \cdot a \leq b \cdot s.a \leq \Omega_R[i] \cdot a + b \) (instead of \(s.a = \Omega_R[i] \cdot a \); meanwhile, leaf-scan stops at the last such record. Similar extensions can be applied to AIM. ASM involves one more complication; when matching records are identified during leaf-scan (say, on \(T_3 \)), an additional leaf-scan is performed on \(T_3 \) with the largest join attribute value among the matching \(S \) records. If there are \(R \) tuples that match this value, another leaf-scan is executed on \(T_S \), with the largest \(a \) value among such records, causing a chain of leaf-scans. This chain terminates when no match is found. For arbitrary join predicates, the sort-merge join paradigm may no longer work, but other optimizations in the proposed algorithms still apply.

Specifically, using ASM, the DSP transmits all records in both relations, identifying those without join partners, so that the client can discard unnecessary attributes. The utilization of MB-trees by AISM and AIM can reduce communication overhead by transmitting all attributes only for tuples with join partners. When it is possible to verify by checking a key range that a sequence of records in a relation do not have join partners, AISM and AIM can further decrease the transmission cost by sending boundary records and digests for them.
6. COMPLEX QUERY AUTHENTICATION
In practice, users may pose complicated and descriptive queries involving joins over multiple relations, as well as other operators such as selections and projections. Based on the proposed binary algorithms, Section 6.1 develops optimized solutions for authenticating multi-way joins, and Section 6.2 discusses general selection-projection-join processing.

6.1 Multi-way join
For ease of presentation we focus on authenticating the join results of 3 relations, and discuss the extension to m-way (m > 3) joins whenever necessary. Consider a query \(Q_{RST} = R \bowtie_{b=a} S \bowtie_{b=c} T \), where \(a (b) \) is the join attribute between \(R \) and \(S \) (\(S \) and \(T \)) respectively. In traditional query processing, the DSP answers \(Q_{RST} \) through a plan of binary join operators. Without loss of generality we assume that all join attributes \((R.a, S.a, S.b, T.b) \) are indexed by MB-trees. Figure 13 depicts an example left-join plan for \(Q_{RST} \) using two binary operators \(Op_1, Op_2 \). Given the ADSs on all join attributes, \(Op_1 \) employs a variant \(m \)-AISM of AIM, optimized for multi-way joins to be discussed shortly. Since the output of \(Op_1 \) is not indexed, a variant \(m \)-AISM of AISM is used for \(Op_2 \). The DSP sends two \(VOs \) to the client: \(VO(RS) \) generated by \(Op_1 \) to be used for verification of \(R \bowtie_{a} S \), and \(VO(RST) \) to authenticate the output of \(Op_2 \). Alternatively, the DSP can answer \(Q_{RST} \) through a right-deep plan that first joins \(S \) with \(T \), and then \(R \) with \(S \bowtie_{c} T \). Similar to conventional multi-way join processing, the best choice is computed by dynamic programming, or any query optimization method.

The algorithms \(m \)-AISM, \(m \)-ASM and \(m \)-AIM used in multi-way join plans differ from their binary counterparts in two aspects. First, recall that AISM and ASM transmit all tuples of the un-indexed input to the client, based on the demand of subsequent operators, leading to considerable reduction of the \(VO \) size. Second, \(VO \) produced by an intermediate operator (e.g., \(VO(RS) \)) contains only the information for verifying and reconstructing those partial results that have matching partners in all other relations. For example, in Figure 13, \(VO(RS) \) authenticates an intermediate result \(rs \) consisting of components \(r \in R \) and \(s \in S \), if and only if there is a tuple \(t \in T \) that matches \(s \). In other words, intermediate joins are evaluated incompletely, and in fact minimally, based on the demand of subsequent operators.

Figure 13 illustrates an instance of multi-way join using the plan of Figure 13. Before executing the plan, the DSP computes the set \(S_0 \) of \(S \) tuples that do not have a join partner in \(T \). In our example, we assume \(s_2 \) matches \(t_1 \), and \(S_0 = \{ s_1, s_3, s_4, s_5 \} \). Given this information, the DSP starts processing \(R \bowtie_{a} S \) using \(m \)-AISM (i.e., \(Op_1 \)). After inserting the root signature of \(T_R \) and \(T_0 \) to \(VO(RS) \), the DSP follows the path of \(T_R \) to the first record \(s_1 \), and adds \(s_1 \) to \(VO(RS) \). At this point, the binary AIM algorithm would use \(s_1 \) to probe \(T_R \) and retrieve matching tuples \(r_2, r_3 \) as well as boundary records \(r_1, r_4 \). This, however, is unnecessary since \(S_0 \) suggests that \(s_1 \) does not match any \(T \) tuple, meaning that all intermediate results generated by joining \(s_1 \) and \(R \) records are useless. Therefore, \(m \)-AIM (similarly, \(m \)-AISM) requires the DSP to skip traversing \(T_R \) whenever it encounters a record in \(S_0 \), eliminating intermediate results not demanded by subsequent operators.

Continuing the example, the DSP skips traversing \(T_R \) for \(s_1 \), and retrieves the second record \(s_2 \in S_0 \), appending it to \(VO(RS) \). Since \(s_2 \not\in S_0 \), the DSP switches to \(T_0 \), inserting matching tuple \(r_5 \), boundary record \(r_4 \), \(r_3 \), and digest \(h_3 \) of node \(A \) to \(VO(RS) \). Because a matching pair \(s_2-r_5 \) is identified, the DSP performs an additional leaf-scan on \(T_0 \), which appends right boundary record \(s_1 \) to \(VO(RS) \). Then, it traverses \(T_0 \) with new target \(r_5-a \), adding boundary record \(s_2 \) to \(VO(RS) \). Because \(s_2 \) is in \(S_0 \), the DSP suspends operations on \(T_R \) and arrives at \(s_5 \), which is also in \(S_0 \) and does not initiate \(T_R \) traversal. Since \(s_5 \) is the last record of \(S \), the DSP terminates \(m \)-AIM by adding digests of all right siblings in \(T_R \) (i.e., \(h_C \)) to \(VO(RS) \). In total, \(VO(RS) \) contains only 3 \(R \) records, compared to all 9 records if the DSP were applying AIM. Next the DSP executes \(Op_2 \). In addition to authenticating the join results, \(VO(RST) \) must establish that the records in \(S_0 \) for which \(Op_2 \) skipped traversing \(T_R \) (i.e., \(s_3, s_4 \)) and \(s_5 \) indeed have no matching \(T \) tuples. For this purpose, the input of \(Op_2 \) contains both the join results of \(Op_1 \) (i.e., tuple \(r_3 s_2 \) and \(s_3, s_4, s_5 \)). \(Op_2 \) sorts the four tuples and traverses \(T_R \) to produce \(VO(RST) \), shown in Figure 14.

Upon receiving \(VO(RS) \), the client rebuilds the root digests of \(T_R, T_0 \) and verifies them against their respective signatures. It also checks that boundary records enclose matching tuples. From \(VO(RS) \), the client extracts \(S \) records whose corresponding \(T_R \) traversals are skipped (i.e., \(s_1, s_3, s_4 \)), and generates the (partial) join result \(r_5 s_2 \) for \(R \bowtie_{a} S \). When it later receives \(VO(RST) \), it prefixes the tuples computed in the previous step (i.e., \(s_1, r_3 s_2, s_4 \),...
s_j) and verifies VO(RST) as in AISM. The proofs for soundness and completeness of the multi-way algorithms are analogous to those of the binary methods.

The above solution incurs some computational overhead on the DSP and the client. Specifically, the DSP has to generate s_T, and the client must produce some intermediate results. Considering that network transmission is usually the bottleneck, this tradeoff is desirable. Nevertheless, the additional cost can be eliminated when the join condition satisfies the property that a\(\neq b\), i.e., all tables join on the same attribute. This situation is common in data warehousing applications, where multiple dimension tables are joined with the fact table on the record ID attribute [22] rather than through foreign keys. For such queries, we propose AST (for authenticated synchronous traversal), which traverses the ADSs of indexed relations in a synchronous fashion, avoiding unnecessary intermediate results. Figure 15 illustrates AST for R \(\times\) \(\bullet\) s_a \(\times\) S \(\times\) \(\bullet\) \(\times\) T, assuming two MB-trees \(\theta\) and \(\tau\), respectively (\(s.a\) does not have an ADS).

$$VO: \{root\ signature\ of\ T_s, T_T, signature\ of\ relation\ S, \\
\quad \text{bitmap}\ B_k = "1000", s_j-s_k\ in\ a\ \text{verifiable order,}\ \\
\quad \Omega[1], h_1, r_2, r_4, r_4, t_1, t_2; \Omega[2]; \Omega[3]; \Omega[4]; h_p, h_r, h_c; h_d\}$$

Figure 15 Example of AST

Initially, the owner’s signatures for \(T_R\), \(T_T\) and \(S\), as well as the tuples \(s_j-s_k\in S\) are appended to the \(VO\). The DSP computes (i) a bitmap \(B_k\) specifying the \(S\) tuples with join partners in both \(R\) and \(T\), which reduces the client’s storage consumption (in a similar way to ASM), and (ii) a rank list \(\Omega_k\) signifying the sort order of \(S\) tuples on attribute \(a\). Assuming the join order\(^4\) is \((R\leftarrow S)\leftarrow\leftarrow T\), AST interleaves the computation of \(R\leftarrow S\) with that of \((R\leftarrow S)\leftarrow T\) to eliminate the generation of unnecessary \(R\leftarrow S \times T\) results.

Specifically, the DSP starts by retrieving the first element \(\Omega_k[1]\) from \(\Omega_k\), appending it to the \(VO\), and traversing \(T_T\) with \(\Omega_k[1]\) as target value. During the traversal, the digest of \(t_j\), the join partner \(r_j\), as well as the boundary records \(r_2\) and \(r_4\) are inserted into the \(VO\). Because a matching pair \((\Omega_k[1], r_j)\) is identified, the DSP switches to \(T_T\), adding matching tuple \(t_j\) and boundary record \(t_2\) to the \(VO\). After that, the DSP continues joining \(R\) and \(S\). Note that on this point the DSP is aware that there are no \(T\) records with \(a\) values between \(t_1.a\) and \(t_2.a\). Based on this, the DSP scans \(\Omega_k\), and appends to the \(VO\) each tuple \(s.a\in S\) such that \(s.a \leq t_1.a\) (without trying to find a join partner of \(s\) in \(T_R\)). For instance, although \(\Omega_k[2], \Omega_k[3]\) and \(\Omega_k[3]\) match \(r_2, r_4\) and \(r_4\), respectively, none of these results is inserted to the \(VO\). Finally, when \(\Omega_k\) is depleted, the DSP completes the traversal of \(T_R\) and \(T_T\) by adding to the \(VO\) the digests of all right sibling nodes, i.e., those of \(r_5, r_6\) node \(C\) (for \(T_R\)) and \(t_1\) (for \(T_T\)). The verification algorithm and soundness/completeness proofs are similar to those of AISM and AIM and omitted for brevity.

6.2 Selection-projection-join query

In addition to joins, complex queries often contain selection and projection components. For projections, we follow the general methodology of [19], i.e., we build a Merkle hash tree MHT\(\Theta\) on each tuple \(t\) that indexes all its attributes. The root hash of MHT\(\Theta\) serves as the digest of \(t\) in the ADSs. Consider that in Figure 1, there is an MHT on each of \(r_p-r_t\) \((c_p-c_t)\) indexing their \(pid, cid\) and \(quantity\) (\(cid, name\) and \(city\)) attributes. Assuming MB-trees on both \(Purchase.cid\) and \(Customer.cid\), the query \(Q_5 = \pi_{name, quantity} (\text{Purchase} v_{-AISM} \text{Customer})\) is processed as follows. The DSP uses AIM to compute the join, with two modifications: (i) for each \(Purchase\) \((Customer\) tuple), its \(cid, quantity\) \((name\) attributes, as well as the hash of the remaining \(pid\) \((city\)) attribute are inserted to the \(VO\) (instead of the entire tuple); (ii) for each boundary record, its \(cid\) value and the hash of other attributes are added to the \(VO\). Using these values, the client rebuilds the root digest of the MHT of each tuple, and subsequently the root hash of the MB-trees.

Next, we address queries involving both selection and join operators. Similar to multi-way joins, we distinguish two cases: (i) the selection applies on the join attribute, and (ii) the selection is on a different column. For case (i), when ADSs are available on the selection/join attribute, the DSP answers the query with a single traversal of the ADSs, continuing AISM (or AIM, AST) with the range selection. For example, consider that in the join of Figure 5, the user imposes a further selection \(\sigma_{C.city \leq \text{New York}}\) where \(C\) is a constant between \(r_4.a\) and \(r_6.a\). After round 1 of AISM execution, the DSP finds that \(\Omega_k[2]\) already violates the range selection, and thus it simply inserts \(\Omega_k[2]\) to \(\Omega_k[6]\) directly into the \(VO\) without traversing \(T_T\) to identify their matching \(S\) tuples. In addition, it appends digests of the right siblings of the root-to-leaf path of \(s_j\) to complete the traversal of \(T_R\). For case (ii), the selection and join operators compete for the use of ADSs. An example is the complex query \(Q_6\) in Figure 1, which involves a join and two selections \(\sigma_{a \leq 200} \text{Purchase}, \sigma_{a \leq \text{New York}}\) \text{Customer}\). Assuming an ADS is available on each of the 4 attributes \(\text{cid, quantity in \text{Purchase} and \text{cid, city in \text{Customer}}}\), an important observation is that for a particular relation \(\text{e.g., Purchase},\) only one ADS \(\text{e.g., either the one on \text{cid or the other on \text{quantity}}}\) can be utilized to answer the query.

Figure 16 illustrates three plans for \(Q_6\). In Figure 16a, the join is able to utilize the ADSs on both \(\text{Purchase.cid} and \text{Customer.cid}\) with algorithm AIM, achieving maximal performance. However, since its output is not indexed, the DSP must transmit all join results to the client, and the latter performs the selections \(\text{i.e.,} \sigma_j \text{ and } \sigma_C\) locally. On the other hand, the plan in Figure 16c processes \(\sigma_j\) and \(\sigma_C\) with the corresponding ADSs, and feeds their (non-indexed) outputs to the join, which must be performed with the less efficient ASM algorithm. The plan in Figure 16b lies between the other two, in which the join is able to use only one ADS. In such situations, the optimal plan depends on the relative selectivity and the cost of the operators. Finally, when there are selections on top of the join \(\text{e.g., plans in Figure 16a and Figure 16b},\) a further optimization is to use a variant of AIM (AISM) similar to \(m\)-AISM \((m\text{-AIM})\), which only evaluates the join partially for records satisfying the subsequent selections.

\(^4\) More sophisticated optimizations such as round-robin [22] and dynamic re-ordering [4] are also applicable to AST.
7. EXPERIMENTAL EVALUATION

We implemented all algorithms using the OpenSSL library [9], and executed all experiments on an Intel Core2 Duo 2.13GHz CPU. The MB-tree implementation is based on B+-trees with 4Kbytes page size. Section 7.1 compares the performance of the proposed algorithms against AINL and NAI. Section 7.2 evaluates multi-way join queries. Our prototype employs SHA1 with a digest of 20 bytes as the hash function, and RSA+SHA1 with a signature of 128 bytes as the digital signature scheme, both of which are widely used in practice [16].

7.1 Evaluation of Binary Joins

We use two synthetic relations R and S, each containing two independent attributes a1 and a2. The values of S.a1 are uniformly distributed in the range 1,10^7], whereas R.a1, R.a2, and S.a2 follow Gaussian distribution (with mean 5×10^6, 3×10^6 and 7×10^6 respectively), and share the same variance σ=10^6. In addition, R.a1 is a foreign key that references S.a1, which is the primary key of S. We construct an MB-tree on each of the four attributes (R.a1, R.a2, S.a1, S.a2), before query processing. We investigate two queries: (i) a foreign-key to primary-key join R.t1.S denoted as FK, and (ii) an equi-join R.t1=S denoted as EQ. In all experiments, R is the outer relation and S the inner one.

We compare the authenticated join algorithms on the following metrics: (i) VO size C_{VO}, (ii) total computation overhead C_{Total} of the client and (iii) query processing cost C_{DSP} of the DSP. In the first set of experiments, we fix the cardinality of both R and S to 10^6 records, and study the impact of the record size, which is equal in R and S. In this setting, AINL requires the DSP to answer 10^8 range queries. Table 1 summarizes the AINL results for the FK query because its cost is too high to be included in the diagrams (the numbers for the EQ query are similar and omitted). The most serious drawback of AINL is the enormous VO size. In particular, when the tuple size is 32 bytes, AINL requires the DSP to transmit 8.9Gbytes to the client, while the entire database consumes merely 64Mbytes. This is due to the huge number (several hundreds) of hash values that are sent with each range query result, which dominates the VO size (note that the VO size is almost insensitive to the record size). In addition, the computation costs for both the DSP and the client are in the order of hundreds of seconds, which are significantly higher than those of the proposed methods.

<table>
<thead>
<tr>
<th>Tuple size (bytes)</th>
<th>32 64 128 256 512</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{VO} (Gbytes)</td>
<td>8.9 9.0 9.2 9.6 10.3</td>
</tr>
<tr>
<td>C_{Total} (seconds)</td>
<td>205 207 210 214 219</td>
</tr>
<tr>
<td>C_{DSP} (seconds)</td>
<td>262 271 429 1728 4603</td>
</tr>
</tbody>
</table>

Figure 17 shows VO size as a function of the tuple length for NAI, ASM, AISM and AIM, as well as the theoretically optimal VO size, which the total size of tuples from R and S that are part of the join results (i.e., those with matching partners in the opposite relation). Note that “optimal” has smaller size than that of the join pairs because it includes a record once, even if it participates in multiple pairs.

The VO of all methods increases linearly with the tuple length, and is always far below that of AINL. NAI and ASM incur similar overhead because they both transmit the entire relations to the client. The VO of AISM and AIM depends on the selectivity of the join. For the FK dataset, because of the foreign-key / primary-key constraint, every tuple in R has a matching partner in S. Therefore, any distributed join algorithm (i.e., with or without authentication) has to transmit the entire relation of R to the client. On the other hand, some tuples of S do not participate in the join, and their transmission is avoided by AISM and AIM. For the EQ dataset, both R and S contain unmatched records. AIM achieves the lowest VO size by excluding such tuples from both tables, followed by AISM which eliminates unnecessary transmissions in S. The VO of ASM and NAI includes all tuples. Note that in terms of absolute values, the network overhead for large tuples is quite high, especially for the FK dataset. However, this is unavoidable because of the join cardinality. As shown in the figure, the VO size of AIM is close to optimal. In practice, joining large tables with foreign-key relationship rarely occurs without projections or selections, which in effect reduces the tuple size, or the cardinality of the relations respectively.

Figure 18 compares the methods in terms of the client’s workload. Our methods outperform NAI by more than an order of magnitude (note the logarithmic scale for the EQ dataset). Comparing the proposed algorithms, AIM is the clear winner because the client computes the digests of the two MB-trees’ root nodes, and verifies them against their respective signatures in main memory. ASM and AISM, on the other hand, require the client to buffer records on the disk, and retrieve them in a random order. Subsequently, their cost grows much faster than AIM with the tuple size. Note that ASM has significantly better performance on EQ than FK. Recall that for tuples of R without join partners, the client stores and accesses only the join attribute. Since the join result of EQ contains only 31×10^3 tuples, a large portion of R is pruned reducing the client’s overhead.
Figure 19 studies the effect of tuple length on the query processing time of the DSP. Since in NAI the DSP does not perform any computations, it is excluded from the diagrams. Comparing Figure 18 and Figure 19, most of the workload is performed by the DSP, which is desirable given that in practice the DSP has much more powerful hardware than the client. Again, the costs of all methods are well below that of AINL. ASM always requires the DSP to sort all tuples of the two relations on the join attributes, and its overhead is similar in both charts. AIM incurs the lowest cost since it does not perform expensive sorting operations. It is cheaper for the EQ dataset because, due to the high selectivity, the ADSs prune the majority of records. The overhead of AISM always lies between the other two.

Next we fix the record size to 128 bytes, |R| to 10^6, and vary the cardinality of S from |R|/10 to 5|R|. This has a similar effect as applying an additional selection (with variable selectivity) on the inner table. The results of AINL on FK are summarized in Table 2. Because AINL answers |R| range queries, each of which traverses the MB-tree in S, its cost grows logarithmically as |S| increases. In fact, as we discuss in Section 2.2, the situation where the outer relation (R) is much smaller than the inner one (S) is most favorable for AINL. Nevertheless, in all settings, AINL incurs significantly higher overhead than other algorithms on all metrics, and is excluded from further discussion.

![Figure 19 Query cost for the DSP vs. tuple size](image)

Figure 19 Query cost for the DSP vs. tuple size

Table 2 Cost of AINL vs. |S|/|R|

	[R]/[S]	0.1	0.5	1	2	5
	C_{AS} (Gbytes)	7.8	8.9	9.2	9.5	9.7
	C_{AM} (Gbytes)	196	205	210	218	223
	C_{DA} (seconds)	296	311	429	540	647

Figure 20 displays the I/O sizes for NAI, ASM, AISMA and AIM. In case of FK, the entire relation of R to have to be included in the I/O due to the foreign-key constraint, which contributes a constant overhead to all methods. For relation S, NAI and ASM transmit all its tuples to the client, while AISM and AIM utilize the ADS to prune most unmatched ones. Accordingly, the I/O size of the former two increases linearly with |S|, while that of the latter two scales much better. For the EQ dataset, the performance gap between AISM/AIM and NAI/ASM is wider (up to an order of magnitude) due to higher selectivity of the join. Similar to Figure 17, the I/O size of AIM is close to the optimal one.

![Figure 20 I/O size vs. |S|/|R|](image)

Figure 20 I/O size vs. |S|/|R|

Figure 21 evaluates the effect of |S|/|R| on the running time of the client. The cost of both ASM and NAI increases linearly with |S|, with the former always well below the latter. AISM and AIM incur even lower workload for the client, and exhibit better scalability with |S|. AIM is always the best choice since it only involves main memory (hash and verification) operations. Finally, Figure 22 illustrates the processing cost at the DSP as a function of |S|/|R| (excluding NAI since it does not involve DSP computations). The proposed algorithms successfully shift most of the computation to the DSP. The ratio |S|/|R| has similar impact on the overhead for both the DSP and the client.

![Figure 21 Query cost the client vs. |S|/|R|](image)

Figure 21 Query cost the client vs. |S|/|R|

![Figure 22 Query cost for the DSP vs. |S|/|R|](image)

Figure 22 Query cost for the DSP vs. |S|/|R|

Summarizing, AISM, AIM and ASM outperform AINL by orders of magnitude on every performance metric. Compared to NAI, the proposed methods incur significantly lower cost for the client. In addition, AISM and AIM utilize ADSs to considerably reduce the I/O size. Overall, AIM is the most efficient solution on all aspects, followed by AISM, and then ASM. The performance gap between different algorithms widens with the join selectivity (as in the EQ dataset). Finally, we discuss the overhead of authentication with respect to conventional algorithms.

- Regarding the communication overhead, our indexed algorithms, and especially AIM, are usually close to “optimal” (i.e., just transmitting the records with matching partners), as shown in Figures 17 and 20. On the other hand, ASM can be significantly more expensive, particularly for selective joins, given that both the base tables must be transmitted to the client because there is no alternative way of verification.
- Regarding the server processing cost, recall that in NAI the server transmits the complete base tables. The client essentially performs a non-authenticated join (after verifying the tables) using block nested loops. Therefore, the client running time in Figures 18 and 21 corresponds to the cost of a non-authenticated join at the server. By comparing with Figures 19 and 22 (running time for the server), the proposed algorithms have similar costs to NAI, and in some cases,
AISM and (especially) AIM may outperform it because they utilize indexes on the join attribute.

- The only party that has to pay a significant price for authentication is the client, which performs local computations (Figures 18 and 21), whereas in non-authenticated joins it simply receives results. This is a fair trade-off since the client can decide if it is worthwhile to dedicate resources for ensuring result correctness. For instance, a client may require authenticated results only for important queries.

7.2 Evaluation of Multi-way Joins

We generate three relations R, S and T involving attributes $R.a_1$, $R.a_2$, $S.a_2$, $S.b_2$, $S.b_3$, $T.b_1$, $T.b_2$. Attributes $R.a_1$ and $T.b_1$ are uniformly distributed in $[1,10^6]$, $S.a_1$ and $S.b_1$ follow Gaussian distribution with mean value $5 \cdot 10^6$ and variance 10^6. $R.a_2$, $S.a_2$, $S.b_2$ and $T.b_2$ follow Gaussian distribution with variance 10^6 and mean values $4 \cdot 10^6$ (for $R.a_2$, $S.b_2$) and $7 \cdot 10^6$ ($S.a_2$, $T.b_2$). In addition, $R.a_1$ and $T.b_1$ are the primary keys of tables R and T, and $S.a_1$, $S.b_1$ are foreign key referencing $R.a_1$ and $T.b_1$, respectively. An MB-tree is constructed for each attribute. We evaluate two queries: (i) $R \bowtie_{T} S \bowtie_{T} T$, which is a primary-key to foreign-key join, denoted as FK, and (ii) $R \bowtie_{S} S \bowtie_{T} T$, denoted as EQ. For all settings, the join plan is always left-deep, i.e., $(R \bowtie_{S} S) \bowtie_{T} T$. We compare NAI against three different combinations of fully optimized join algorithms, namely m-ASM+m-ASM, m-AISM+m-AISM, and m-AIM+m-AIM, where $X+Y$ means that the first operator joining X with Y adopts algorithm X and the second one uses Y. Note that "m-AIM+m-AISM" is not applicable since the results of R-s, which is not indexed, feed to the second join operator. AINL is excluded due to its prohibitive cost.

We fix the cardinality of R, S and T to $5 \cdot 10^6$, and vary the record length. Figures 23-25 demonstrate the VO size, verification overhead at the client and the processing cost at the DSP, respectively. In general, the efficiency of a multi-way join method depends on its underlying binary join algorithms, which means that (i) all methods outperform NAI in terms of the client’s workload, and (ii) the two solutions utilizing ADSs, i.e., m-AIM+m-AIM and m-AISM+m-AISM achieve considerable savings in terms of VO size. m-AIM+m-AIM has the best overall performance, followed by m-AISM+m-AIM, and finally m-ASM+m-ASM. A major difference between the results for multi-way and binary joins regards the processing cost at the client. Specifically, in binary AIM client verification occurs entirely in main memory and thus it is very fast in both datasets. For multi-way joins, the client has to use disk accesses for reading and writing the intermediate results of R-s. Consequently, in the FK dataset, the advantage of m-AIM+m-AIM over m-AISM+m-AIM is limited since the number of these intermediate results is large due to the foreign-key constraint.
8. CONCLUSION
This paper constitutes the first comprehensive work on authenticated join processing in outsourced databases. Compared to range queries, authenticated joins are inherently more complex and expensive. We propose three algorithms based on the sort-merge paradigm, AISM, AIM and ASM, which cover the entire spectrum of index availability and possible query plans. We show through an extensive experimental evaluation that our techniques outperform two benchmark authenticated join algorithms on all metrics, and are truly effective in terms of minimizing the transmission cost as well as the client’s workload. Finally, we deal with complex queries involving joins over multiple tables and, possibly, selections and projections.

An interesting direction for future work concerns the development of authenticated join algorithm based on other (than sort-merge) paradigms. For equi-join queries, an alternative of ASM can be based on the hash join. Specifically, for query $R \bowtie_{k_a \leq S_b} S$, the DSP first transmits all records of R to the client. The client builds a hash table of them. Next, the DSP sends S records one-by-one, and the client probes the hash table to generate join results for each S record received. The optimization of marking records without join partners also applies to this method. This solution incurs less computational overhead for the DSP (i.e., it does not need to sort S) and less memory consumption of the client (i.e. it does not need to store S), but the CPU overhead for the client is higher. Moreover, it requires individual transmission for the records (of S) instead of a single VO in ASM.

ACKNOWLEDGEMENTS
This work was supported by grant 6181/08 from Hong Kong RGC.

REFERENCES