The Director of the United States Patent and Trademark Office

Has received an application for a patent for a new and useful invention. The title and description of the invention are enclosed. The requirements of law have been complied with, and it has been determined that a patent on the invention shall be granted under the law.

Therefore, this

United States Patent

Grants to the person(s) having title to this patent the right to exclude others from making, using, offering for sale, or selling the invention throughout the United States of America or importing the invention into the United States of America, and if the invention is a process, of the right to exclude others from using, offering for sale or selling throughout the United States of America, or importing into the United States of America, products made by that process, for the term set forth in 35 U.S.C. 154(a)(2) or (c)(1), subject to the payment of maintenance fees as provided by 35 U.S.C. 41(b). See the Maintenance Fee Notice on the inside of the cover.

David J. Kappos

Director of the United States Patent and Trademark Office
A novel form of an integrated variable inductor uses an on-chip transformer together with a variable capacitor. The variable capacitor can either be a varactor or a switched capacitor array and is connected to the secondary coil of the transformer. By changing the capacitance at the secondary coil of a transformer, the equivalent inductance looking into the primary coil of the transformer can be adjusted. With another capacitor in parallel to the primary coil, two different modes of resonance inherently exist, and a very wide frequency tuning range can be achieved by combining the two modes.
$$Z_{11} = \frac{L_1 L_2 - M^2}{L_2 - M}$$

FIG. 6
FIG. 7
FIG. 8
FIG. 11
FIG. 15
FIG. 16
FIG. 18
FIG. 26
DUAL-MODE VOLTAGE-CONTROLLED OSCILLATOR

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 10/927,785, filed Aug. 27, 2004, entitled "Inte-
grated Variable Inductor," the entirety of which is hereby incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to variable inductors and, more particularly, to an integrated variable inductor
using an on-chip transformer and a variable capacitor.

BACKGROUND OF THE INVENTION

Frequency tuning mechanisms are required in a wide range
of different applications. For example, they are required in
wireless transceivers for the down conversion of signals at
different frequencies, for multiple-band applications and for
wide band applications. An ideal frequency tuning circuit will
have a wide tuning range, be power efficient and have a high
operating frequency.

Conventionally a tuning circuit includes an LC tank, and a
conventional method of providing control of the tuning fre-
quency is by using a variable capacitance such as a varactor to
vary the value of C in the LC tank. Several classes of varac-
tors, such as junction diodes and MOS capacitors, are com-
monly found. However, this arrangement has the disadvan-
tage that there is a limited frequency range (about 10% only)
owing to the limited capacitance ratio of the varactor. Also,
because the power consumption of the LC tank is high, it is
more power efficient to minimize the capacitance of the tank
and to adjust the inductance for frequency variation. As a
result, it is highly desirable to be able to implement integrated
variable inductors.

Currently, several techniques are available for providing a
variable inductance. These include active inductors and
switched resonators. A typical design for an active inductor is the
gyrator-C architecture, which employs a gyrator and an
integrating capacitor. A gyrator consists of two transconduc-
tors connected in a feedback configuration, as shown in FIG.
1. This type of active inductor makes use of the parasitic
capacitance of the transistors as the integrating capacitor. The
inductance of active inductor is:

\[
Z_L(j\omega) = \frac{g_{m1} + j \omega C_{pl1} + C_{gs1} + C_{gd1}}{(g_{m1} + j \omega C_{pl1})(g_{m2} + j \omega C_{pl2} + C_{gs2})}
\]

Because only a few active devices are used in this type of
inductor, the chip area occupied is usually very small. Tun-
ability is another advantage of this type of active inductor. As
shown in the above equation, by changing the bias and, there-
fore, the transconductance of the transistors, the inductance
of the active inductor can be varied.

However, the power consumption and noise contribution of
the active devices used in these inductors are generally too
high to be practical, and the dynamic range is quite limited.
Most important of all, active inductors are generally not sui-
table for high frequency operation. At high frequencies, the
performance of the active inductor is degraded by the phase
errors induced by parasitics.

Recently, switched resonators using multiple inductors have
been introduced. A switched resonator typically com-
prises two spiral inductors and a switching transistor, either
connected in parallel or in series with the inductors as shown
in FIG. 2. If the switching transistor is connected in parallel
with one of the inductors, the inductor is shorted when the
switch is on. As a result, the equivalent inductance reduces
from \(L_1+L_2\) to \(L_1\).

A switched resonator can be used for coarse tuning and
another varactor can be used for fine tuning. The tuning range
of the resonator can therefore be significantly improved.
However, the turn-on resistance of the switching transistor
has a great impact on the quality factor of the resonator. It is
necessary to increase the size of the transistor in order to
reduce the effect of the turn-on resistance on the quality
factor. Since the operating frequency of the resonator depends
on the equivalent inductance and the capacitance between
drain and ground of the switching transistor, the drain capac-
tance of the switch significantly reduces the operating fre-
quency of the resonator. Thus, this type of switched resonator
is not suitable for applications with low noise, low power, and
high frequency.

It is also possible to frequency tune some types of resona-
tors by mechanically changing a property of these resonators.
However, this is not feasible if the resonator is to be integrated
on chip.

Thus, it is desirable to provide a variable inductance that is
suitable for high frequency circuits and has reduced power
consumption and reduced noise degradation.

SUMMARY OF THE INVENTION

According to the present invention there is provided a
variable inductor comprising a transformer having primary
and secondary coils, wherein a variable capacitance is pro-
vided in parallel with said secondary coil. By changing the
capacitance at the secondary coil of a transformer, the equiva-
 lent inductance looking into the primary coil of the trans-
former can be adjusted.

In exemplary embodiments of the invention, the variable
capacitance may be provided by a varactor or a switched
capacitor array, for example.

In another aspect of the present invention, a capacitance is
also provided in parallel with the primary coil. With another
capacitor in parallel to the primary coil, two different modes
of resonance inherently exist, and a very wide frequency
tuning range can be achieved by combining the two modes.
This capacitance may be a fixed capacitor or simply parasitic
capacitance of the primary coil in various embodiments of the
invention. In another embodiment, the capacitance in parallel
with the primary coil is a variable capacitance.

In another aspect of the invention, the primary and second-
ary coils may be coupled together by a mutual inductance.

In accordance with yet another aspect of the invention, a
voltage controlled oscillator includes a variable inductor
comprising a transformer having primary and secondary
coils, wherein a variable capacitance is provided in parallel to
said secondary coil.

BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the invention will now be described
by way of example and with reference to the accompanying
drawings, in which:

FIG. 1 shows a prior art active inductor,
FIG. 2 shows prior art switched resonators,
FIG. 3 shows the impedance of a simple LC resonator with a varying ratio of L and C.

FIG. 4 shows a schematic of a variable inductor according to an embodiment of the invention.

FIG. 5 shows an example of the frequency response of a resonator consisting of a variable inductor and a capacitor according to an embodiment of the invention.

FIG. 6 shows a variable inductor using π model.

FIG. 7 shows a T-model representation of a variable inductor.

FIG. 8 shows a resonator with a variable inductor according to an embodiment of the invention.

FIG. 9 shows a T-model representation of a variable inductor according to an embodiment of the invention with resistive components.

FIG. 10 shows an example of the inductance against frequency in an embodiment of the invention using the T-model representation of FIG. 9.

FIG. 11 shows a resonator with a variable inductor according to an embodiment of the invention with resistive components.

FIG. 12 shows a graphical representation of Equation (5).

FIG. 13 shows the effective inductance of an embodiment of the present invention against C_2.

FIG. 14 shows the curves of FIG. 12 aligned with the corresponding Z_jL.

FIG. 15 illustrates the switching of the maximum input impedance in an oscillator using an embodiment of the invention.

FIG. 16 shows a schematic of a voltage-controlled oscillator with an embodiment of the present invention.

FIG. 17 shows details of the capacitors C_2p and C_2n shown in FIG. 16.

FIG. 18 shows simulation results of the voltage-controlled oscillator of the embodiment of FIG. 16.

FIG. 19 compares the performance of a VCO formed in accordance with an embodiment of the invention with the prior art.

FIG. 20 shows a testing setup using coupled microstrip lines.

FIG. 21 shows the lumped model of the microstrip lines in FIG. 20.

FIG. 22 shows the measurement results of the coupled microstrip lines.

FIG. 23 shows a testing setup for obtaining Z_jL of circuits according to an embodiment of the invention.

FIG. 24 shows the Smith chart of the measured S_11, and FIG. 25 shows the measured equivalent inductance with different off-chip capacitors.

FIG. 26 is a die photo of a VCO formed according to an embodiment of the invention.

FIG. 27 shows the frequency spectrum and phase noise at the output of the VCO with the first-mode of oscillation, and FIG. 28 shows the frequency spectrum and phase noise at the output of the VCO with the second-mode of oscillation.

Detailed Description of Preferred Embodiments of the Invention

FIG. 3 shows the impedance of a simple LC resonator when the ratio of the L and C is varied and the resonant frequency is kept unchanged. For such an LC oscillator, if the value of L increases, the impedance of the tank also increases. Then, less ac current is drawn, and therefore, less dc power is required to attain the same output amplitude. In other words, in order to reduce the power consumption, it is advantageous to maximize the inductance, or, to minimize the capacitance in an LC tank.

Moreover, for an inductor with a series resistance of r_s, the parallel resistance of the inductor is

\[\frac{\omega^2 L^2}{r_s} \]

For an oscillator, in order to start up oscillation, the following condition has to be fulfilled,

\[\frac{G_{in} \omega^2 L^2}{r_s} = 1 \]

Assuming that the quality factor of the inductor remains almost the same for different frequencies, when L increases, G_{in} decreases and the power consumption can be reduced.

Conventionally, frequency tuning is achieved by changing the capacitance of a tank using varactor. However, as mentioned before, it is more power efficient to minimize the capacitance of the tank and adjust the inductance for frequency variation. Therefore, the need for a variable inductor arises.

FIG. 4 shows the schematic of a variable inductor according to an embodiment of the present invention. In this embodiment the variable inductor comprises a transformer with two capacitors. C_1 is the capacitors connected to the primary coil and C_2 is the other capacitor connected to the secondary coil. C_1 can either be the parasitic capacitance, a fixed capacitor, or a varactor, whereas C_2 can be a varactor or a switched capacitor array. By changing the capacitance of C_2, the equivalent inductance looking into the primary coil of the transformer can be tuned. FIG. 5 shows an example of the frequency response of a resonator consisting of a variable inductor and a fixed capacitance.

With this embodiment of the invention there are two modes of frequency tuning: frequency tuning in a single mode, and frequency tuning by mode-switching. Together with its own parasitic capacitance, the primary coil will resonate at different frequencies, which are determined by the value of the capacitance at the secondary coil. By connecting another varactor at the primary coil, the frequency tuning range can be further extended to be much larger than that can be achieved with existing solutions with variable capacitors.

It has also been shown by theory, simulation, and experiments that there exist two different resonant modes associated with the proposed variable inductor. The tuning range of the invention can be greatly increased by combining two modes. Since the variable inductor of the preferred embodiments only comprises passive components, no power consumption is required which is highly advantageous.

In order to explain the two resonant frequencies and the mode-switching property of the transformer intuitively, the π model can be used as shown in FIG. 6.

The two LC tanks with two different resonant frequencies shown in FIG. 6 are coupled to each other by the mutual inductance,

\[\frac{L_1 L_2 - M^2}{M} \]

Hence, it can be concluded that two resonant frequencies are inherent in a transformer.
The ideal case is considered first. Lumped components without resistive loss are used for the analysis here. A T-model, as shown in FIG. 7, is used for the analysis. Its input impedance, Z_{11}, can be calculated as shown below:

$$Z_{11} = \left(l_2 + \frac{\omega^2 k^2 l_2 l_3 c_2}{1 - \omega^2 l_2 c_2} \right) = s_{11} \text{eff}$$ (1)

where

$$\omega_0 = \frac{1}{\sqrt{l_2 c_2}}$$

Five properties of the variable inductor can be derived from the above equation:

1. When $\omega \to 0$ or $C_2 \to 0$, $L_{\text{eff}} \to L_1$
2. When $\omega \to \infty$ or $C_2 \to \infty$, $L_{\text{eff}} \to L_1(1-k^2)$
3. When $\omega = \omega_0$, $L_{\text{eff}} \to \infty$
4. When $\omega = \omega_0^*$, $L_{\text{eff}} = 0$
5. When $\omega = \omega_0^* \cdot L_{\text{eff}} = 0$

L_{eff} will reach the largest value when

$$\omega = \omega_0 = \frac{1}{\sqrt{l_2 c_2}}.$$ (2)

In practice, the largest value of L_{eff} cannot be infinite because there is loss component in the variable inductor, which is not included here, but will be revisited in the later analysis.

Thus, it can be concluded that the input impedance of the embodiment of the present invention is inductive and can be represented by the above equation. By changing the value of C_2, the values of the equivalent inductance can be adjusted accordingly. Therefore, varied or switched capacitor array.

If the variable inductor is connected to a capacitor in parallel, as shown in FIG. 8, a resonator with tunable resonant frequency can be implemented. The following equations can then be derived from FIG. 8:

$$L_{\text{eff}} = \frac{l_2 + \frac{\omega^2 k^2 l_2 l_3 c_2}{1 - \omega^2 l_2 c_2}}{\omega_0}$$ (3)

where

$$L_{\text{eff}} = L_1 \text{ and } L_2 = \frac{1}{s_{11}}$$

Since $(L_1, C_1, L_2, C_2) > 0$, there are always two resonant frequencies.

Similarly, the equivalent inductance in the resonator can be derived as shown below:

$$L_{\text{eff}} = L_2 C_2 + L_1 C_1 \pm \sqrt{(L_2 C_2 - L_1 C_1)^2 + 4k^2 L_2 C_1 L_1 C_2}$$ (4)

Since $(L_1, C_1, L_2, C_2) > 0$, there are always two resonant frequencies.

Since $(L_2, C_2, L_1, C_1) > 0$, there are always two resonant frequencies.

Since $(L_1, C_1, L_2, C_2) > 0$, there are always two resonant frequencies.
FIG. 6 the two LC tanks coupled to each other by the mutual inductance explain the two inherent resonant frequencies in the embodiment of the invention. This property can be applied to an oscillator for a wide-band voltage-controlled oscillator.

In an oscillator, a resonant tank should be combined with an active circuit, which is used to cancel the resistive loss of the resonant tank. By combining with the active circuit, oscillation will start at the frequency with the higher quality factor, which requires less energy to start oscillation. By making use of the two inherent resonant frequencies in embodiments of the present invention, the oscillator can switch from one mode of oscillation to another. This can be achieved by changing the values of C_2 in the current invention, which adjusts the resonant frequency, as well as, the maximum values of the impedance in each mode. When C_2 increases beyond a particular value, there is a swap in the maximum value of the impedance. This is illustrated in FIG. 15.

An embodiment of the present invention may be compared with a simple LC tank. In a first comparison, both an embodiment of the current invention and a simple inductor are connected with a 1 pF 10 pF capacitor and the value of the inductance, L_1 in the embodiment of the invention is the same as the inductance in the simple LC tank. The maximum resonant frequency of the simple LC tank is 5.6 GHz, whereas the maximum resonant frequency of the tank with the variable inductor according to an embodiment of the invention is around 19 GHz. Next, the capacitor in the simple LC tank is reduced by four times to attain a similar resonant frequency to the resonator comprised of the embodiment of the present invention. It can be seen that, although the simple LC tank can achieve resonant frequency close to that formed by an embodiment of the present invention, the magnitude of the simple resonant tank is still only 70% of the tank with the variable inductor. The increase in the magnitude is due to coupling of the coils in transformer. Since the present invention consists of coupled resonators, the invented variable inductor has a quality factor being 1-k times larger than that of a simple LC tank. At 11.2 GHz, the Q of the tank with the variable inductor is 11.4, whereas the Q of the tank with the simple LC tank is only 7.4, which is only 65% of the variable inductor. Besides the increase in the magnitude, the resonator according to an embodiment of the invention also has two modes of resonances. Compared to the simple LC tank, the simple LC tank.

An example of a voltage-controlled oscillator is designed using an embodiment of the present invention is shown in FIGS. 16 and 17. The transistors in the oscillator are the active circuit called the negative-gm, cell, which is used to cancel the resistive components of the resonator. The VCO is designed with a differential configuration. This requires a four-port transformer. This is feasible with only single layout by using symmetrical and center-tapped transformer.

The simulation results are shown in FIG. 18. Simulated oscillation frequency, phase noise and the power consumption against the value of C_2, are shown in the figure. The oscillation frequency decreases when the value of C_2 increases. The decrease in C_2 is achieved by a 4-bit switched capacitor array. As mentioned before, there should be two modes of resonance. This can be verified by the large increase in frequency when the value of C_2 is tuned from 5 pF to 8 pF. The results are summarized in Table 1 below. Due to the tuning in a single mode and the switching of resonant frequency, the oscillator can be tuned from 5.8 GHz to 17 GHz (98%).

<table>
<thead>
<tr>
<th>Structure</th>
<th>Variable inductor</th>
<th>Simple LC tank w/same power</th>
<th>Simple LC tank w/large power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>Supply voltage/V</td>
<td>Frequency/GHz</td>
<td>Frequency/GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.8-17</td>
<td>4.2-4.5</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td></td>
<td>98%</td>
</tr>
<tr>
<td>Power/mW</td>
<td>0.5-0.9</td>
<td>0.26-0.56</td>
<td>0.5-1.6</td>
</tr>
<tr>
<td>Phase noise/dBc/10 MHz</td>
<td>-126-136</td>
<td>-128-133</td>
<td>-143-137</td>
</tr>
</tbody>
</table>

The tuning range of this design is much larger compared to that achievable with existing state-of-the-art designs, which is usually limited to less than 20%. In order to achieve such a wide tuning range, only a ring oscillator can be used, but it has much inferior performance in terms of frequency, phase noise, and power consumption.

Comparison with VCOs using simple LC tanks is also implemented in simulation. The performance of the VCOs is shown in FIG. 19 and summarized in Table 1. With the simulated power consumption, the tuning range for the simple LC tank is only 7%. By increasing the power consumption, the tuning range can be increased to 60%.

Three testing setups were designed to demonstrate the characteristics of embodiments of the invention. They are:

1. Testing setup using coupled microstrip lines.
2. Testing setup using on-chip transformer and off-chip capacitor.
3. Fabrication of a CMOS VCO using on-chip transformer and on-chip capacitors.

The purpose of the first testing setup, as shown in FIG. 20, is to demonstrate the functionality of embodiments of the invention by off-chip components. The lumped element model of the coupled microstrip lines is shown in FIG. 21. By changing the values of C_2, the equivalent inductance of the testing setup is adjusted, which is the same as in the current invention.

In this setup, a pair of coupled microstrip lines and shunt capacitors are used to synthesize two coupled resonators with two different resonant frequencies. The two microstrip lines are shorted to ground. A terminal of one of the microstrip lines is soldered to a SMA connector for connection with testing equipments.

A network analyzer, 8720E/S, is used to measure the S-parameters of the embodiment of the invention when the capacitor is changed from 0.47 pF to 1.5 pF. S_{11} is then converted to Z_{11}. The plot of the measured Z_{11} and the corresponding plot of the equivalent inductance against frequency with different values of C_2 (2202, 2206, and 2204, 2208 respectively) are shown in FIG. 22.

The purpose of the second testing setup, shown in FIG. 23, is to demonstrate the utility of an embodiment of the present invention using an on-chip transformer. Since an on-chip variable capacitor is not available, the secondary coil of the on-chip transformer is connected to a capacitor using bond-wire. The turn ratio of the on-chip transformer is 1:2. The capacitor used is an off-chip surface mount capacitor. By changing the off-chip capacitor, the equivalent inductance of the testing setup is adjusted, which is the same as in an embodiment of the current invention. Silver paint is used to
attach the surface mount capacitor on a pad in the PCB. The same pad is connected to the on-chip transformer using bondwire.

A network analyzer, 8720ES, is used to measure the S-parameters of the invention when the capacitor is changed from 0.47 pF to 3.3 pF, S11 is then converted to Z11. The Smith chart of the measured S11, and the corresponding plot of the equivalent inductance against frequency with different values of off-chip capacitor (2402, 2502; 2404, 2504; 2406, 2506; and 2408, 2508 respectively) are shown in FIGS. 24 and 25 respectively.

It is important to notice that the self-resonant frequency of surface-mount capacitor is around 6 GHz. The performance of the embodiment of the invention using this setup is, therefore, limited to frequency around 6 GHz. In the measurement results, the data points at frequency larger than 6 GHz is not reliable. Yet, the data points below 6 GHz already demonstrate the change of inductance with the off-chip capacitors. The third experiment is done through a VCO utilizing the present invention, which is fabricated using TSMC 0.18 μm CMOS technology. The resonator of the VCO composes of an on-chip 4-port transformer and on-chip switched capacitor array. By switching the SCA, the output frequency of the VCO can be adjusted. Its schematic is similar to the one shown in FIG. 16 and its die photo with DC bias connected using bondwires is shown in FIG. 26. On-chip measurement was done using high-speed SGS. It is found that by increasing the capacitance to 5 pF at the secondary coil using SCA, the output frequency can be changed from 6.71 GHz to 10.49 GHz. In conventional design, increasing the capacitance of a resonator can only reduce the oscillation frequency. In this design, which utilizes the present invention, increasing the capacitance to a particular value switches the oscillation from the first mode to the second one. The frequency spectrum and the phase noise plots at the output of the VCO are shown in FIG. 27 and FIG. 28. The performance of the VCO is summarized in Table 2. This fabricated VCO verifies the existence of a second oscillation mode inherent in the present invention and successfully demonstrates the switching mechanism of the different oscillation modes.

<table>
<thead>
<tr>
<th>TABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency/ GHz</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>6.69</td>
</tr>
<tr>
<td>10.52</td>
</tr>
</tbody>
</table>

It will thus be seen that in preferred embodiments of the invention, together with its own parasitic capacitance the primary coil will resonate at different frequencies which are determined by the value of the capacitance at the secondary coil. By connecting another varactor at the primary coil, the frequency tuning range can be further extended to be much larger than that can be achieved with existing solutions with variable capacitors. It has also been shown by theory, simulation, and experiments that there exist two different resonant modes associated with the proposed variable inductor. The tuning range of the invention can be greatly increased by combining the two modes. Since embodiments of the invention are only composed of passive components, power consumption is low.

Resonators with very wide tuning range can then be implemented with embodiments of the invention and used in different applications. As an example, conventional LC oscillators have limited frequency tuning range and limited performance in phase noise and power consumption, in particular at high frequencies and low supply voltage, mainly because of the varactor requirement. With the proposed variable inductor, the capacitor can be fixed and be small so that all the parameters including frequency tuning range, phase noise, and power consumption, can be greatly improved. The invention has been applied to a VCO to achieve wide frequency tuning range and high performance that are not achievable with existing technologies.

The invention claimed is:
1. An apparatus, comprising:
 a center-tapped transformer having a primary coil and a secondary coil disposed in parallel to the primary coil;
 a variable capacitance connected in parallel with the secondary coil, with the secondary coil disposed in between the variable capacitance and the primary coil; and
 another capacitance connected in parallel with the primary coil, with the primary coil disposed in between the other capacitance and the secondary coil, wherein the other capacitance is either fixed or variable.
2. The apparatus of claim 1, wherein the variable capacitance comprises a varactor.
3. The apparatus of claim 1, wherein the variable capacitance comprises a switched capacitor array.
4. The apparatus of claim 1, wherein the other capacitance connected in parallel with the primary coil further comprises parasitic capacitance of the primary coil.
5. The apparatus variable of claim 1, wherein the primary coil and the secondary coil are coupled together by a mutual inductance.
6. The apparatus of claim 1, wherein a first resistance is coupled in series between the secondary coil and the variable capacitance.
7. The apparatus of claim 1, wherein a second resistance is coupled in series between the primary coil and the other capacitance in parallel with the primary coil.
8. The apparatus of claim 1, wherein the other capacitance comprises a fixed capacitor.
9. The apparatus of claim 1, wherein the other capacitance comprises a variable capacitor.
10. The apparatus of claim 1, wherein the variable capacitance and the other capacitance have different capacitance values.
11. The apparatus variable of claim 1, wherein the variable capacitance and the secondary coil form a first LC tank configured to operate with a first resonant frequency, and wherein the other capacitance and the primary coil form a second LC tank configured to operate with a second resonant frequency.
12. A voltage-controlled oscillator, comprising:
 a center-tapped transformer having a primary coil configured to receive inputs and a secondary coil configured to generate outputs, wherein:
 the secondary coil is disposed in parallel to the primary coil;
 a variable capacitance is connected in parallel to the secondary coil, with the secondary coil disposed in between the variable capacitance and the primary coil;
 another capacitance that is either fixed or variable is connected in parallel with the primary coil, with the primary coil disposed in between the other capacitance and the secondary coil;
 the secondary coil has a first terminal at a first terminating end of the secondary coil and a second terminal at a second terminating end of the secondary coil; and
11. the first and second terminals are the only terminals of the secondary coil.
13. The voltage-controlled oscillator of claim 12, wherein the capacitance connected in parallel with the primary coil comprises a fixed capacitor.
14. The voltage-controlled oscillator of claim 12, wherein the other capacitance connected in parallel with the primary coil comprises parasitic capacitance of the primary coil.
15. The voltage-controlled oscillator of claim 12, wherein the other capacitance connected in parallel with the primary coil comprises another variable capacitance.
16. The voltage-controlled oscillator of claim 12, wherein the variable capacitance and the other capacitance have different capacitance values.
17. The voltage-controlled oscillator of claim 12, wherein the variable capacitance and the secondary coil form a first LC tank configured to operate with a first resonant frequency, and wherein the other capacitance and the primary coil form a second LC tank configured to operate with a second resonant frequency.
18. The voltage-controlled oscillator of claim 12, wherein the center-tapped transformer is symmetrically configured such that:
 a first portion of the secondary coil is coupled in parallel with a first portion of the variable capacitance;
 a second portion of the secondary coil is coupled in parallel with a second portion of the variable capacitance;
 a first portion of the primary coil is coupled in parallel with a first portion of the other capacitance; and
 a second portion of the primary coil is coupled in parallel with a second portion of the other capacitance.
19. An apparatus, comprising:
 a variable center-tapped transformer having a primary coil and a secondary coil disposed in parallel to the primary coil;
 a capacitance connected in parallel with the secondary coil, with the secondary coil disposed in between the capacitance and the primary coil; and another capacitance, either variable or fixed, in parallel with the primary coil, with the primary coil disposed in between the other capacitance and the secondary coil; wherein the secondary coil has a first terminal at a first terminating end of the secondary coil and a second terminal at a second terminating end of the secondary coil.
20. The apparatus of claim 19, wherein the capacitance connected in parallel with the primary coil comprises a fixed capacitor.
21. The apparatus of claim 19, wherein the capacitance connected in parallel with the primary coil comprises a parasitic capacitance of the primary coil.
22. The apparatus of claim 19, wherein the capacitance connected in parallel with the primary coil comprises a variable capacitance.
23. The apparatus of claim 19, wherein the primary coil and the secondary coil are coupled together by a mutual inductance.
24. The apparatus of claim 19, wherein the variable capacitance and the other capacitance have different capacitance values.
25. The apparatus of claim 19, wherein the variable capacitance and the secondary coil form a first LC tank configured to operate with a first resonant frequency, and wherein the other capacitance and the primary coil form a second LC tank configured to operate with a second resonant frequency.
26. A voltage-controlled oscillator, comprising:
 a center-tapped transformer having a first variable inductor and a second variable inductor that are symmetrically coupled with each other, wherein each of the variable inductors includes:
 a primary coil configured to receive inputs;
 a secondary coil configured to generate outputs and disposed in parallel to the primary coil;
 a variable capacitance connected in parallel to the secondary coil and disposed in between the variable capacitance and the primary coil;
 another capacitance connected in parallel with the primary coil and disposed in between the other capacitance and the secondary coil.
27. The voltage-controlled oscillator of claim 26, wherein a first terminal of the primary coil for each of the first and second variable inductors are coupled to each other.
28. The voltage-controlled oscillator of claim 26, wherein a second terminal of the primary coil for each of the first and second variable inductors are coupled to a first and a second transistor, respectively.
* * * * *